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Abstract. Predictive process monitoring methods predict ongoing case
outcomes by analyzing historical process data. Recent studies highlighted
the increasing need to enhance the interpretability of these prediction
models. This is often achieved by exploiting post-hoc explainable method-
ologies to assess the importance of different process features on the pre-
dicted outcome. However, the significance of the location of process ac-
tivities on prediction models remains unexplored. In several real-life con-
texts, there might be potential meaningful relations between the location
of the activities and process outcome. This information facilitates insights
into process management optimization and decision-making. This paper
introduces a novel post-hoc explainable artificial intelligence technique
inspired by permutation feature importance to assess the impact of activ-
ity locations in predictive models. The experimental results on real-life
event logs validate the feasibility of the proposed method, showcasing the
influence of the location of (group of) activities on outcome predictions.

Keywords: Predictive Process Monitoring · Explainbale AI · Feature
Permutation Importance

1 Introduction

Predictive Process Monitoring (PPM) methods aim to predict the future status
of ongoing cases by analyzing historical process data. In recent years, a plethora
of Machine Learning (ML) approaches have been proposed to support PPM.
Extensive studies and benchmarks have indicated the effectiveness of black-box
models, such as XGBoost and Random Forest [18], in accurately predicting pro-
cess outcomes across diverse domains. Recently, the adoption of Deep Learning
approaches in PPM has been on the rise [7]. Although these black-box models
demonstrate impressive predictive capabilities, they also bring complexity and
limited interpretability as trade-offs.

eXplainable Artificial Intelligence (XAI) aims to address the lack of inter-
pretability of black-box models by supporting process analysts in investigating
how a given classifier made its decisions. A popular class of XAI methods is post-
hoc methods, which explain decisions made by black-box models after they are
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Fig. 1: A simplified version of the sepsis patient trajectory. [14]

Table 1: An example of a training event log from Sepsis.

ID Trace Label
1 RG, LA, LE, CR, ER, ST, IL, IA, NC, ER, CR, LE, CR Negative
2 RG, ER, ST, IL, LE, CR, IA, LA, IC, DI Positive
3 RG, LA, ER, ST, LE, CR, IA, NC, CR, LE, CR, LE, CR Negative
4 RG, LE, LE, LA, ER, ST, CR, IA, IC, LE, LA, NC, DI Positive
5 RG, ER, ST, LE, CR, IL, IA, LA, NC, CR, LE Positive
6 RG, LA, CR, ER, ST, LE, IL, IA, NC, DI Negative

built. Earlier research in PPM has utilized techniques like SHAP [4, 23], LIME
[16], and Permutation Feature Importance (PFI) [5] to obtain the importance of
different process features at both local and global levels. Utilizing these existing
XAI methods, prior research has addressed the impact of executing each activ-
ity on process outcome [4]; however, the importance of the location of executing
activities through the process has not been discussed.

As an example, let us consider the process model in Figure 1, which is a sim-
plified version of the Sepsis patient pathways presented in [14]. Table 1 shows an
excerpt of an event log used to train a model to predict patients returning to the
emergency room within 28 days of discharge. Let us consider the activity Lactic
Acid measurement (LA). This activity can be executed at different moments
(locations) in the process. From the table, no relation can be detected between
the occurrence of this activity and the process outcome. However, the situation
is different when its location is considered. The execution of activity LA in posi-
tion 2 corresponds to negative process outcomes, whereas its occurrence in other
locations correlates with positive outcomes. This intriguing observation might
encourage a process analyst to assess the importance of the location of LA and
compare this importance with other activities.

To assess the importance of activity locations with post-hoc methods, one
needs to employ a trace encoding technique able to represent activity locations
explicitly. To incorporate the location information in training an ML classifier,
index-based encoding has been used in several studies [13, 18]. Existing post-hoc
XAI approaches usually return two kinds of explanations using index-based en-
coding. The first one only measures the importance of each index (location) in
the process. For example, we might understand that the third activity is more
important than the second activity executed in the process, regardless of the
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type of activity. The second one, instead, considers both the kind of the activity
and its location, generating explanations in the form “Occurrence of activity A
at index 3 in case 10 impacts the prediction.” While providing useful insights,
this form of explanation combines the effect of executing activity A and the loca-
tion of its execution in the process. Therefore, the lingering question is whether
executing activity A impacts the process outcome regardless of its occurrence
in a particular location. As a result, uncertainties arise regarding the poten-
tial impact of relocating activities, like shifting activity A from timestamp 3 to
timestamp 8, on the predictive model. This query can be extended to encompass
multiple activities that occur collectively (e.g., activities belonging to the same
subprocess). Prior research has unveiled distinct outcomes when activities are
considered in groups as opposed to their individual effects [19]. However, the
impact of their location on the outcome remains unexplored.

We argue that being able to provide explanations on which activities may
affect the classifier’s performance and whether their impact depends on their
position provides the process manager with valuable insights about the process.
In flexible processes, there is often little or no prior knowledge of how the de-
cision to execute a (group of) activity(ies) at a given moment may affect the
outcome. Furthermore, the extracted relations can support process managers in
different tasks. For instance, insights on the importance of activity location in
determining the process performance can be used in selecting suitable redesign
heuristics [6] to explore alternative control-flow constraints during business pro-
cess re-engineering efforts.

In this paper, we seek to address the following research question: “Given a
predictive model trained on a set of process executions, how can we assess the
importance of the location of a group of process activities on the classifier per-
formance?” Our main contribution is a novel post-hoc model-agnostic method,
inspired by the PFI method, designed to assess the importance of the location
of executing activities on outcome prediction. Our experimental results on real-
life event logs show the feasibility of the method and provide evidence of the
importance of the location of activities for trained outcome prediction models.

The remainder of this paper is organized as follows. In Section 2, we present a
review of the relevant related work. Next, in Section 3, we introduce our proposal.
The experimental settings and results are discussed in Section 4. Finally, Section
5 concludes the research and outlines potential directions for the future.

2 Related work

XAI approaches proposed within the PPM domain can be broadly categorized
into factual and counterfactual explanations [3]. The former aims to reveal
the reasoning behind specific predictions, emphasizing the most influential fea-
tures. On the other hand, counterfactual explanations provide insights into what
changes are necessary for an input sample to achieve a desired prediction [3].

Significant efforts have been made to generate realistic counterfactual ex-
planations for process prediction such as DiCE4EL [9], LORELEY [10], and
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CREATED [11]. While counterfactual explanations offer valuable insights into
hypothetical scenarios, this paper’s primary focus remains on factual explana-
tions to gain a deeper understanding of the functionality of black-box models
in the context of PPM. Regarding factual explanations, two groups of meth-
ods have been exploited in PPM: intrinsically interpretable and post-hoc meth-
ods. Intrinsically interpretable methods seek to build interpretable models from
scratch, such as rule-based classifiers [12], neuro-fuzzy networks [15], and linear
regression [5]. However, intrinsically interpretable models often underperform
compared to their black-box counterparts [1].

Post-hoc methods can be classified into two groups: model-specific and model-
agnostic [1]. Model-specific methods are designed to work with specific predic-
tion models, such as Gated Graph Neural Network [8], LSTM with Layer-wise
Relevance Propagation [20], and LSTM with attention layers [21]. In contrast,
model-agnostic methods compute explanations based on the inputs and their as-
sociated outputs, allowing the process analyzer to use various prediction models.

Regarding the model-agnostic post-hoc techniques, several studies employed
LIME to address the problem of low accuracy by identifying the features that
cause wrong predictions [16] and providing an explanation for various feature
representations of the event log [17]. Various model-agnostic post-hoc methods,
such as SHAP and FPI, are widely used in the literature to provide a local
and global explanation [5, 23]. A recent study introduced an ML-based approach
for generating multi-level explanations, employing logistic regression, attention-
based LSTM, and the eXplainable Dual-learning Deep network [22]. However,
it is notable that none of these studies have tackled the global importance of
activity locations within a process. Hence, we are filling the mentioned gap by
proposing a model-agnostic post-hoc explanation method.

3 Methodology

Figure 2 illustrates our proposed method for measuring the global importance of
the location of one or a group of activities on the process outcome prediction. The
steps depicted with hatched patterns represent this research’s primary focus and
contribution. Drawing inspiration from the PFI technique designed for tabular
data, our method quantifies the reduction in model performance resulting from
the random shuffling of a single feature value [2]. In our analysis, we are inter-
ested in analyzing the effect of changing activity locations in process executions.
However, the direct application of conventional PFI to a tabular-encoded event
log is not suitable for our analysis. Let us assume to encode the event log using
index-based encoding. In this encoded log, the location of an activity does not
map to a single column; instead, it encompasses all the columns related to the
same activity. Therefore, the shuffling implemented by standard PFI techniques,
which shuffles one column independently from the others, is inadequate for our
analysis due to intricate interdependencies among features. Indeed, relocating
an activity necessitates coordinated shuffling of all associated location-related
columns to maintain distinct activity locations in generated traces. Further-
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Fig. 2: Overview of the location permutation importance method.

more, shifting the location of an activity inevitably impacts also the location of
other activities in the trace. Therefore, we introduced a tailored method that
accommodates the sequential nature of processes.

The method takes as an input an event log, that is, a multiset of traces, each
tracking the execution of a given process instance (or case). Each trace involves
a sequence of events representing the execution of a given process activity at a
given timestamp. Within the context of this work, we consider only the activity
names as event attributes, assuming that their order in the trace is based on
their execution timestamps. Table 1 shows an excerpt of an event log, where
each execution corresponds to the treatment administered to a sepsis patient.

First, we train a black-box model using index-based encoding and evaluate
its performance through k-fold cross-validation on the event log. This provides
us with the baseline performance. Then, we identify a group of activities (aka.
itemsets) whose location importance we want to measure. For each itemset,
first, we use the location permutation module to shuffle the location of each
item in the itemset across the existing traces. Then, we apply index-based en-
coding to the shuffled event traces. Next, we assess the model’s performance on
the permuted event logs using the original trained model through k-fold cross-
validation. The difference between the baseline performance and the performance
on the permuted event log indicates the importance of the itemset in question.
These iterative steps are repeated for each individual itemset. Finally, we plot
the importance of each itemset in one plot to facilitate the location importance
comparison. In the remainder of this section, we delve into the itemsets selection
(3.1) and location permutation (3.2) modules.

3.1 Itemsets selection

Depending on the purpose of the analysis, a process analyst might be interested
in exploring the significance of the location of different groups of activities. To
facilitate this exploration, we utilize an Itemsets Extractor function denoted as
IE(L). Given an event log L, this function generates itemsets of activities con-
sidered of interest for the analysis. This function can be customized according
to the analyst’s notion of interest and may encompass diverse methods. A com-
mon and straightforward approach is measuring an itemset’s interest through
frequency, often accomplished using the Apriori algorithm [24].
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As an example, let us consider the event log depicted in Table 1 and let
us assume to use an implementation of IE(L) which returns itemsets with a
minimum frequency of 80%. An excerpt of the output of the itemset selection
step would then be IE(L) = {{RG}, {ER, CR}, {RG, LE, CR}, . . . }.

3.2 Location permutation

We perform the location permutation module for each discovered itemset to shuf-
fle the location of activities in that itemset within all traces. However, randomly
shuffling activities’ locations has important drawbacks. First, it is likely to result
in unrealistic traces. Second, when permuting itemsets involving more than one
activity, a completely random shuffle may result in a permuted trace where the
relative order of activities in the itemset has also been changed, thus introduc-
ing noise in assessing the importance of the itemset location. To mitigate these
issues, we introduce the following two constraints:

– Feasibility Constraint: We restrict the location permutation of an activity
to the observed locations of the occurrences of that activity throughout the
event log.

– Preserving Ordering Relation: When shuffling itemset activities, we pre-
serve their relative order within each trace.

These constraints allow us to balance between maintaining meaningful pro-
cess behaviors in generated traces and introducing enough randomness and vari-
ability in itemset locations within the event log.

Keeping these constraints in mind, given an itemset I extracted by an event
log L, we permute the location of I in each trace in which it occurs by imple-
menting the following steps. We first extract a set of Observed Locations for
I throughout the event log. To uphold the sequential order of activities within
an itemset, we define tuples encompassing the itemset activities. For instance,
the Observed Locations for the itemset {ER, CR} in the event log L shown in
Table 1 can be defined as OL(L, (ER, CR)) = {(5,4), (10, 11), (2,6), (3,6), (5,7),
(2,5), (4,3)}. In certain locations, activity CR follows activity ER, whereas, in
other instances, CR precedes ER. It’s important to note that if a single activity
from the itemset appears multiple times in a trace and results in an overlapped
occurrence of the itemset, only the first complete occurrence is considered for
collecting observed locations and subsequent permutation. For instance, in case
number 1 in Table 1 we observe the occurrence of {CR, ER} twice, along with an
additional CR. Since the final occurrence of CR lacks a distinct accompanying
ER to form the itemset, its location is not included in the function’s output.

Next, we randomly rearrange the positions of itemsets in traces using the pool
of observed locations. We extract a random location from the set of observed
locations for every activity of the itemset within a trace. If the chosen location
conforms to the existing sequential order of activities of the itemset instance,
it is retained. Otherwise, an alternative location is drawn to ensure that the
activity relations remain consistent within that specific itemset instance. This
operation is repeated for each occurrence of the itemset in the trace.
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As an example, let us consider case number 1 from the running exam-
ple: σ1 = ⟨RG,LA,LE,CR,ER, ST, IL, IA,NC,ER,CR, LE,CR⟩. A pos-
sible permutation for itemset {ER, CR} generates the permuted trace σ

′

1 =
⟨RG,LA,CR,ER,ER, LE,CR, ST, IL, IA,NC,LE,CR⟩.

4 Implementation and experiments

4.1 Settings

We utilized XGBoost, a top-performing ensemble model in outcome prediction
according to [18], and evaluated it using a 5-fold cross-validation. To account for
the variability introduced by the permutation process, we repeated the location
permutation 10 times and utilized box plots to visualize the results. A decrease
in the f1-score indicates the importance of each itemset under consideration.

We considered two analysis goals, i.e., deriving the location importance for
the single and frequent group of activities. For the latter, we extracted the top
10 frequent itemsets of size greater than one using the Apriori algorithm [24].

In addition to assessing the importance of itemset locations, we have also
employed the conventional PFI technique to assess the importance associated
with the existence of itemsets. To achieve this, we utilized binary encoding, where
each feature represented a distinct itemset. We trained an XGBoost model on
the binary-encoded event log. It is worth mentioning that the difference between
the importance of the location and the existence of the selected itemsets is also
due to using different encoding methods. Our aim is not to establish an absolute
comparison between the obtained values but, instead, to shed light on the insights
gained from examining the location of activities as opposed to their existence.
The implementation of the proposed method is available at GitHub1.

We used public event logs widely used in the literature, such as bpic2011,
bpic2012, and Sepsis event logs with the same labeling strategy as in [18].

4.2 Results and discussion

Single-activity itemsets. Figure 3 represents the top 20 most important single
activities regarding their location in the process (in green) and their correspond-
ing existence importance values (in blue). Activities that hold the greatest posi-
tional significance do not necessarily maintain equivalent existence importance.
For instance, in the bpic2012 accepted event log, the location of the activity
"W Nabellen Offer" stands out as an influential factor, leading to a decrease
in performance between 12% and 14%. However, its existence does not yield
substantial explanatory power for the predictive model. To delve more into this
activity, since we lack expert access to validate explanations from the black box
model, we have explored the event log to assess whether the data aligns with
our findings. In particular, we have plotted the distribution of process outcomes
associated with different locations of this activity in Figure 4a. According to the
1 https://github.com/MozhganVD/PermutationLocationImportance
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Fig. 3: Single activities location importance vs. their existence importance.

event log, the occurrence of this activity leads to the process being accepted in
61% of the cases; however, we observe variations in the acceptance percentage
from 50% to 70% in different locations. While these observations cannot serve as
direct validation for the presented results, they suggest that our findings in terms
of location and existence importance are meaningful in the log under analysis.

Likewise, across all three labeled event logs extracted from the bpic2011
dataset, most activities demonstrate high significance based on their location,
while their existence is insignificant for the model. Conversely, we encounter ac-
tivities showing a relatively strong influence due to their sheer presence. Take
the activity "ac370000" within the bpic2011 f1 event log; for instance, it demon-
strates notably high importance in relation to its existence. A similar trend is
observable across all event logs extracted from the sepsis dataset, where multiple
activities such as "leucocytes" in sepsis 1 (see Figure 4b), "release A" in sepsis 2,
and "release B" in sepsis 3 showcase the same behavioral patterns. As depicted
in Figure 4b, the presence of the "leukocytes" activity strongly correlates with
positive outcomes, only with minor variations in location.

Multiple-activities itemsets. Figure 5 represents the location and existence im-
portance of the extracted itemsets. A first observation is that, in general, the
existence of the frequent itemsets does not exhibit much importance for the pre-
diction model. This observation could potentially stem from our selection of the
most frequent itemsets, which might not necessarily be the most predictive ones.
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(a) Example from bpic2012 accepted. (b) Example from sepsis 1.

Fig. 4: Distribution of the locations of activities over different outcomes.

However, permuting their location could still affect the prediction model. No-
tably, within the bpic2011 f1 log, except for the itemset {ac370000, ac370419}
whose existence demonstrates a noticeable effect on the prediction model, the
remainder of the frequent itemsets are primarily influential due to their location.

We have plotted the distribution of outcomes across diverse locations for
itemset with the highest existence importance in bpic2011 f1 (Figure 6b) and
with the highest location importance in bpic2011 f2 (Figure 6a). Note that
when plotting itemset locations, we can easily have a lot of locations with low-
frequency values. This would lead to many locations in the X-axis with many
small bars, resulting in a very cluttered figure. To simplify the visualization,
we aggregated all locations with the same starting point. For example, all lo-
cations of (1,3), (1,5), and (1,10) are shown in index 1 in the plot. While this
representation is less accurate since only the starting position of each itemset
is considered, it still provides a reasonable estimate of how the output distri-
bution varies in relation to different locations. Notably, the itemset {ac379999,
ac370000} exhibits significant variation in positive and negative class propor-
tions across varying locations. There are also more possible locations for this
itemset in general. In contrast, the itemset {ac370000, ac370419} maintains an
almost consistent positive and negative fraction across different locations.

Discussion The obtained results confirm the feasibility and practicality of the
proposed methods in measuring the importance of the location of activities. They
also underscore the need to delve further into the significance of locations within
process analysis, given the meaningful relationships between activity location
and associated outcomes detected in real-life event logs.

Nonetheless, our approach presents some limitations. First, our method’s fo-
cus is on classifier performance, which might not fully reveal the underlying
relationships between activities and outcomes in the dataset. This prompts the
need for expert validation of the insights gathered. Moreover, an activity loca-
tion’s importance is inherently intertwined with other activity locations. While
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Fig. 5: Location vs. existence importance for 10 most frequent itemsets.

we have addressed this issue by implementing repeated permutations, quantify-
ing the exact impact of these permutations remains a complex challenge. Also,
despite imposing feasibility constraints, the risk of placing activities in prohib-
ited locations due to dependencies persists, and more sophisticated methods are
needed. Additionally, the effectiveness of our method is influenced by the de-
sign choices made during various methodological steps. This acknowledges the
potential for refining strategies, such as employing predictive pattern detection
methods, as previous studies discussed that frequent patterns are not necessarily
the most predictive ones [19].

5 Conclusion and future work

Our exploration into XAI within PPM has shed light on the importance of un-
derstanding activities’ location-based significance. Our novel post-hoc method,
inspired by the Permutation Feature Importance, endeavors to address this gap
by quantifying the impact of activities locations on predictive process outcomes.
We performed several experiments on real-life event logs widely used in the PPM
domain. Our experiments underscore the method’s feasibility, as demonstrated
through its successful application to real-life event logs. The results provide clear
evidence regarding the latent importance of activities’ location. This insight into
the significance of location adds a new dimension to our understanding, one that
is frequently overlooked by existing XAI techniques.
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(a) Example from bpic2011 f2. (b) Example from bpic2011 f1.

Fig. 6: Distribution of the locations of itemsets over different outcomes.

These considerations highlight the potential for further extension of this re-
search, prompting us to investigate different approaches for itemset selection,
seeking more meaningful itemsets rather than just being frequent. For instance,
we intend to construct outcome-oriented patterns introduced in [19] rather than
relying on frequent itemsets. Additionally, we are working on a methodology to
evaluate the importance of the order of activities within each itemset, besides
their location importance. Furthermore, our future research endeavors to develop
more sophisticated approaches to ensure the feasibility of permuted traces.
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