
Discovering Process-Based Drivers for Case-Level
Outcome Explanation

Peng Li1∗, Hantian Zhang1⋆, Xu Chu2, Alexander Seeliger2, and Cong Yu2

1 Georgia Tech, Atlanta, USA
{pengli, hantian.zhang}@gatech.edu

2 Celonis, New York, USA
{x.chu, a.seeliger, c.yu}@celonis.com

Abstract. Process mining has shown great impact in improving busi-
ness Key Performance Indicators (KPIs), which are typically measured
as aggregations over case-level outcomes. A commonly encountered key
question in achieving such impact is understanding the underlying rea-
sons for why a certain outcome appears in some cases (e.g., why certain
cases take long to finish). We use the term drivers to refer to explanations
for case-level outcomes. We hypothesize that how process is run, in other
words, process traces, directly influences case-level outcomes, and hence
KPIs. In this paper, we propose a new method to automatically and ef-
ficiently discover process-based drivers that are effective, significant and
interpretable. We formally define the problem of driver discovery as a
constrained optimization problem. Given that the problem is NP-hard,
we develop efficient greedy algorithms to solve the problem. We evaluate
our method on real-world datasets to demonstrate the effectiveness and
efficiency of our approach

Keywords: Process Mining · Explanation · Case outcome.

1 Introduction

Process mining is a discipline that aims to discover, monitor, and improve real-
world processes. The growing interest in this discipline can be attributed to
the increasing availability of recorded process execution data in businesses, as
well as the strong desire to improve business outcomes, measured in various
Key Performance Indicators (KPIs) [3]. A KPI for process operation is typically
measured by taking a historical event log and calculating an aggregation over
case-level outcomes. For example, on-time delivery rate as a KPI is calculated
as the percentage of cases that have an outcome of being delivered on time; and
average throughput time is calculated as the average time it takes to complete
the execution of cases. Using process mining to discover process inefficiencies,
execution gaps have shown significantly impact in terms of improving business
KPIs.
⋆ equal contribution, work done in Celonis.

2 L. Peng et al.

In our experience of delivering process mining solutions to customers for
improving their KPIs, there are some important and common questions that are
frequently encountered: Why is a certain KPI so low (or high)? What causes
certain cases to have a negative outcome, and hence affecting the overall KPIs?
To answer these real-world questions, we formally define and address the problem
of Driver Discovery in this paper. Drivers refer to the explanations that are most
likely to drive a particular case-level outcome, and hence have a direct impact on
KPIs. In particular, we want to make use of the event log and discover process-
based drivers that contain information about the events or activities in event log
traces. The motivation is that process data which describes the execution trace
of a case should reveal the fundamental root cause of case-level outcomes. For
example, certain cases experiencing long throughput times can be attributed to
the involvement of a particular manual activity in their event log traces.

For discovered drivers to be practically useful, they have to be effective,
significant, and interpretable. Intuitively, a driver is effective if the probability of
observing a certain outcome is highly likely given the driver. A driver should also
be significant in that it should cover as many occurrences of a certain outcome as
possible. In addition, a driver needs be interpretable so that users can understand
the driver, and can then take corresponding actions.

This paper investigates methods to discover drivers on process data that meet
those requirements. Concretely, the paper makes the following contributions:

– We formally define the problem of process-based driver discovery as a con-
strained optimization problem, and propose a discovery workflow (Section 2).

– We propose three categories of process-based features as well as efficient
methods to enumerate and prune such features (Section 3).

– Given that the driver discovery problem is NP-hard, we develop an efficient
algorithm based on beam search to solve the problem (Section 4).

– We evaluate our method on real-world datasets. The experiment results show
the effectiveness and efficiency of our method (Section 5).

2 Preliminary

2.1 Input Data and Discovery Workflow

Data Model. We assume a standard case-centric event log data model. In
particular, we assume as input a case table and an event log table. The case
table has columns {case_id,X1, X1, X2, ...Xm, Y }. {X1, X2, ...Xm} are case-
level attributes, Y is the case-level outcome. We assume in this paper that
the target variable Y is a binary outcome variable, while the attributes Xi

can be either numerical or categorical. The event log table has three columns
{case_id, activity_name, time_stamp}.

Discovery Workflow. In process mining, the event log records the execution
traces of individual cases. The execution trace of a case contains valuable source
information and signals that might explain the outcome of a case. How do we

Discovering Process-Based Drivers for Case-Level Outcome Explanation 3

leverage the execution traces of cases, together with case-level attributes? Fig-
ure 1 shows the overall workflow: we first flatten the event table by generating
multiple process-based features {Xm+1, Xm+2, ...} for each case, which are then
joined with the case table on the {case_id} column. For example, for every
unique activity A in the event log, we will create a process-based feature XA to
indicate the number of times the activity A appears in each case.

Case-Level Features

Event Log
Table

Case Table

Features based on
individual activities

Features based on a sequence of
indirectly following activities

Driver
Discovery

Joining on
case_ID

Features based on a sequence of
directly following activities

Fig. 1. Driver Discovery Workflow.
2.2 KPI Driver Formal Definition and Goodness
Given a binary outcome Y = y ∈ {0, 1} to explain, we formally define a driver
d as a conjunction of constraints on a subset of attribute values:

d := (X1 ⊙ v1) ∧ (X2 ⊙ v2)... ∧ (Xk ⊙ vk) (1)

where Xj ∈ X is a feature that could be a case-level feature or a flattened
process-based feature, xj is a feature value and ⊙ ∈ {=, ̸=, <,>,≤,≥} is a
comparison operator.

Given that there are exponential number of driver with respect to the number
of features considered, we define the following goodness metrics for drivers based
on various conversations with customers. Let D = {ti|i ∈ [n]} denote the joined
dataset (c.f. Figure 1) with n cases, where ti is the ith case. Let Dd ⊆ D denote
the subset of cases that fulfill the attribute constraints specified in the driver d:

– Effectiveness (high precision). Given a particular outcome Y = y, good
drivers should effectively drive that outcome rather than preventing the oc-
currence of that outcome. Therefore, a good driver d should be effective, or
has high precision, if for cases that satisfy the driver conditions, the probabil-
ity of the occurrence of the given outcome is high. Formally, this is written as
Pd(D, y) =

∑
ti∈Dd

1(ti[Y]=y)

|Dd| .
– Significance (high recall). Good drivers are supposed to cover as many

cases with the interested outcome as possible. This is especially important
if the driver is used to find the underlying reasons for some issues, such as
identifying the reasons for low KPI. If the driver only covers a small number
(e.g., 1%) of low-KPI cases, it cannot be used to significantly improve the KPI
even if the driver is effective. Hence, a good driver should be significant, or has
high recall, if it covers as many occurrences of a given outcome as possible.
This property can be formally written as Rd =

∑
ti∈Dd

1(ti[Y]=y)∑
ti∈D 1(ti[Y]=y) .

4 L. Peng et al.

– Interpretability. Good drivers should be easily interpretable, and hence
users can take actions to fix the problem. Intuitively, the simpler the driver
is, the easier it can be understood. Let |d| denote the number of attributes in
the driver. Then, we use |d| as the proxy metric for interpretabilty.
Our goal is to find a good driver that is effective, significant and easily inter-

pretable. However, it may not be possible to optimize all three properties simulta-
neously. To balance the trade-off between effectiveness and significance, inspired
by using F-score [11] to balance precision-recall trade-off, we combine the effec-
tiveness and significance into one metric denoted by Fd: Fd(D, y) = 2PdRd

Pd+Rd
. This

metric will be high as both effectiveness and significance are high. Either a low
effectiveness or low significance will result in a low score. Therefore, optimizing
Fd will yield a driver with a good balance on effectiveness and significance. For
interpretability, in practice, if the number of attributes involved in the driver is
not too large (e.g., |d| ≤ 3), its interpretability is generally acceptable. Therefore,
we only need to ensure |d| under a threshold θ (e.g., θ = 3) to make it easily
interpretable rather than optimize it.
Definition 1 (Driver Discovery Problem). Given a dataset D and an out-
come y, we would like to select a driver d that maximizes the metric Fd, while
keeping the number of constraints (denoted by |d|) smaller than θ. This can be
written as a constrained optimization problem as follows.

argmax
d

Fd(D, y) s.t. |d| ≤ θ

Problem Complexity. A naive way to solve this constrained optimization
problem is to enumerate all drivers with |d| ≤ θ and return the one with the
highest score. For datasets with categorical attributes only, the number of pos-
sible drivers with at most θ constraints is O((mc)θ), where m is the number of
attributes, c is the number of possible attribute values. Consider m = 100 and
c = 10. Even for θ = 3, there would be 1 billion possible drivers, let alone that
there are infinite drivers for datasets with numerical attributes. Therefore, this
naive approach is not feasible in practice. In fact, we can prove the problem is
NP-hard (formal proof omitted due to space).

3 Process-Based Feature Engineering
We include three categories of process-based features: (1) features based on indi-
vidual activities; (2) features based on a sequence of activities that directly follow
one another; and (3) features based on a sequence of activities that indirectly
follows one another.
Features based on individual activities. Let A denote all unique activities.
We will create a feature XA for each unique activity A ∈ A that appears in
the event log of all cases. For each case ti, the feature value ti[A] is the number
of times the activity A appears in the trace of the case ti. The complexity for
generating these features is O(|A|).
Features based on a sequence of directly following activities. A feature
in this category consists of a sequence of directly following activities, such as
XD
{A1,A2} or XD

{A2,A4,A5,A1}, where the superscript D means directly following

Discovering Process-Based Drivers for Case-Level Outcome Explanation 5

and the subscript is the activity sequence of the feature. For each case ti, a
directly following sequence-based feature value is 1 if the feature’s sequence
appears at least once as a sub-sequence in the case’s event log, and 0 otherwise.

We have two potential ways to generate features in this category. First, we
could enumerate all possible sequences using A, which is exponential O(2|A|).
However, a feature is only useful if at least one case’s feature value is 1. Therefore,
we can alternatively generate candidate features by enumerating all cases. For
each case ti, we enumerate the start index s and the end index e of the case’s
trace, and the sub-sequence between s and e would be a candidate feature. The
number of features generated this way is O(L2 ∗ n), where n is the number of
cases and L is the maximum trace length of any case. We first compare the
two numbers 2|A| and L2 ∗ n, and pick the enumeration method with the lower
complexity. In practice, we took the second enumeration option for all datasets
we experimented with. We then prune features that do not meet the minimum
precision and recall thresholds.

Features based on a sequence of indirectly following activities. A fea-
ture here consists of a sequence of indirectly following activities, such as XI

{A1,A2}
or XI

{A2,A4,A5,A1}, where the superscript I means indirectly following and the
subscript is the activity sequence of the feature. For each case ti, in indirectly
following sequence-based feature value is 1 if the feature’s sequence’s activities
appear in the right order at least once in the case’s trace, and 0 otherwise.

Example 1. Let us consider two features XD
{A1,A2} and XI

{A1,A2}. For a case ti

with trace {A1, A4, A2, A5}, ti[XD
{A1,A2}] = 0 and ti[X

I
{A1,A2}] = 1.

For this category of features, we will have to enumerate all possible sequences
using A, which is exponential O(2|A|). This is because, the enumeration method
starting from cases would have a similar, and sometimes even higher given big
n, exponential complexity of O(n× 2|L|).

We followed the famous Apriori algorithm [1] for enumerating and prun-
ing features in this category using a lattice data structure. For the ith level
of the lattice, we generate and prune all candidate sequences of length i. The
candidates in level i are generated using frequent candidates in the previous
level i − 1. Specifically, a candidate of length i can only be frequent if all of its
sub-sequences of length i − 1 are frequent. For example, the indirectly follow-
ing sequence A1, A2, A3 can only be frequent if A1, A2, A1, A3, and A2, A3 are
frequent. Given that we only want to retain candidate features that are above
a certain recall threshold θr, the minimum support, i.e., number of cases where
the feature is 1, for a candidate to be frequent is |1(ti[Y] = y)| × θr. Concretely,
we generate the indirectly following sequence features in the following steps:

1. Generate |A| length 1 candidate using A. Calculate the support for them and
retain only those with support bigger than or equal to |1(ti[Y] = y)| × θr.

2. Generate length i candidate using the frequent length i−1 candidates. Note
that a length i candidate is generated only if all its sub-sequences of length
i− 1 are frequent.

6 L. Peng et al.

3. Calculate the support for length i candidates, and retain only the frequent
ones. Iterate step (2) and step (3) until we have no more frequent candidates.

4. Calculate the precision of all frequent candidates from all levels and retain
those meeting the precision threshold θp.

Feature Selection. Given the exponential number of sequence-based features,
we perform feature selection based on their effectiveness (precision) and sig-
nificance (recall). Our directly follow and indirectly follow features are binary
features. We define the precision and recall of a binary feature X with respect
to a target outcome y as follows:

PX =

∑
ti∈D 1(ti[Y] = y) & ti[X] = 1∑

ti∈D ti[X] = 1
RX =

∑
ti∈D 1(ti[Y] = y) & ti[X] = 1∑

ti∈D 1(ti[Y] = y)

We keep a process-based sequence feature X if its precision and recall are
greater than some thresholds PX ≥ θp and PX ≥ θr. Note that we set θp and θr
to low numbers (θp = 0.5 and θr = 0.2 in our experiments) so as not to lose any
features might contribute to useful drivers when combined with other features.

4 Driver Discovery Algorithm

Given the hardness of the problem, this section introduces our greedy algorithm
to solve the aforementioned issue. Specifically, we present an efficient greedy
searching algorithm based on beam search.

A straightforward greedy algorithm starts from a driver with no constraint
and iteratively adds one constraint with the highest benefit into the driver until
the number of constraints in the driver exceeds the given limit. The benefit of
a constraint can be computed as the Fd score after adding the constraint into
the current driver. Note that it is possible that the Fd score decreases with any
additional constraint. Therefore, we keep track of the driver with the highest Fd

score during exploration and return it as the final result.
However, this greedy algorithm has a drawback: adding one optimal con-

straint at each step may not lead to the global optimal driver. For example,
assume the global optimal driver is X1 = a ∧X2 = b. However, for drivers with
one constraint, the optimal driver is X3 = c. Then the greedy algorithm will
select X3 = c at the first step and it is no longer possible to reach global optimal
driver by adding more constraints.

To increase the probability of finding the best driver, we use beam search [12],
which is a heuristic search algorithm. Instead of only keeping and developing one
best driver at each step, we keep the top K (e.g, K = 10) drivers with the highest
Fd scores in a “beam". At each step, we will extend each driver in the beam with
one additional constraint, and keep the top K resulting drivers for the next
step. We will still keep track of the best driver that we have seen during beam
search and return it as the final result. The term "beam search" refers to the
way the algorithm explores the search space by considering a limited number of
candidates at each step, forming a "beam" of possible solutions.

Discovering Process-Based Drivers for Case-Level Outcome Explanation 7

Algorithm. The pseudocode of the beam search algorithm is shown in Al-
gorithm 1. We start from an empty driver (Line 1 - 2). At each iteration, we
extend each driver in the beam by one additional constraint (Line 4 - 7). The
candidate set of constraints can be generated by enumerating all possible combi-
nation of attributes, operators, and attributes values. For numerical attributes,
we can choose c splitting points (e.g., 10-percentile, 20-percentile, etc) and for
each splitting point v, we can generate two candidate constraints as X ≤ v and
X > v. We compute the Fd score of each driver (Line 8), and we keep the top K
drivers with the highest score for the next step (Line 12 - 13). This process will
be repeated for θ iterations such that the number of constraints in the driver
will not be greater than θ (Line 3). We keep track of the best driver d∗ that we
have seen (Line 10 - 11) and return it at the end (Line 14).

Algorithm 1: Beam Search Algorithm
input : Input dataset D, an outcome y, threshold θ, beam width K
output : A driver d

1 d∗ ← dempty

2 Bcur ← [dempty]
3 for i = 1, 2, ... θ do
4 Bnext ← []
5 foreach d in Bcur do
6 foreach (Xj ⊙ vj) in candidates do
7 d′ ← d ∧ (Xj ⊙ vj)

8 d′.score = Fd′ (D, y)
9 Bnext.append(dnext)

10 if d′.score > d∗.score then
11 d∗ ← d′

12 sort Bnext by d.score
13 Bcur ← Bnext[: K]

14 return d∗

Complexity. Consider a dataset with n examples and m features, and each
attribute can take c values (assuming numerical attributes are split into c inter-
vals). The number of candidate constraint will be O(mc). Let K be the beam size.
For each iteration, we compute the Fd score O(Kmc) times, which takes O(nmc)
time. Therefore, the total time complexity for our algorithm is O(Knmcθ).
5 Experiment
We evaluate the effectiveness and efficiency of both the process-based feature
engineering and the beam search algorithm for driver discovery.

5.1 Experimental Setup
Datasets. We use three popular datasets from BPI Challenge, which are widely
used in the literature, and a synthetic dataset to test the scalability of the
driver discovery algorithm. The stats of the datasets are listed in Table 1. BPIC
2017 [7] contains 31,509 loan application cases of a Dutch financial institute;
BPIC 2018 [9] contains 43,809 applications for EU direct payments for German
farmers from the European Agricultural Guarantee Fund; and BPIC 2019 [8]
contains 251,734 purchase orders for a dutch company. For all three real datasets,
our target is a binary outcome that indicates whether each case is taking longer
than 75 percentile throughput time of all cases. We use the synthetic dataset
to evaluate the scalability of the driver discovery algorithm and the features are
already engineered.

8 L. Peng et al.

Table 1. Dataset Statistics (AAPC: average activities per case; DF: directly follows
features; IDF: indirectly follows features)

Dataset #Cases #Case Features #Activities AAPC DF IDF

BPIC 2017 31,509 4 26 38.2 7 20
BPIC 2018 43,809 61 41 57.4 111 404
BPIC 2019 251,734 16 42 6.3 112 258
Synthetic 1,000,000 100 N/A N/A N/A N/A

Methods Compared. We compare the following driver discovery methods. Note
that, all methods use the same feature set generated by Section 3. We will
evaluate the effectiveness of process-based feature engineering in Section 5.2 and
compare driver discovery algorithms in Section 5.3.

– Beam Search (Beam): This is our proposed algorithm in Section 4. By default
we set the maximum number of constraints in a driver θ to be 3, and we set
the beam search width K to be 8.

– Decision Tree (DT): We run the decision tree algorithm to find the drivers.
The decision tree is trained to classify the KPI. Then we down the tree from
root to leaf, each path would be a driver and all the points in the leaf would
be the cases that satisfies the given driver.

– Exhaustive Search (ES): This approach enumerates all possible drivers and
find the best one with the highest score.

Evaluation Metrics. We use F1 score to measure the quality of the drivers, as
defined in Section 2.2. We use running time to evaluate algorithm efficiency.

5.2 Evaluating Process-Based Feature Engineering

We evaluate the effectiveness of the process-based feature engineering described
in Section 3. The number of each type of features is shown in Table 1. Specifically,
we compare the following feature set in a cumulative manner:

– Feature Set A: case-level features only
– Feature Set B: features based on activity counts and features in A
– Feature Set C: directly following activities and all features in B
– Feature Set D: indirectly following activities and all features in C

Qualitative Assessment. We show the Top-1 driver discovered by each fea-
ture set in Table 2. For example, for the BPIC 2017 dataset, an important
driver is "Count of W_Call after offers > 4", the repetition is likely to be
the cause of long throughput time, and is highlighted by the driver discov-
ery algorithm. The directly following feature "A_Cancelled directly followed
by O_Cancelled" and the indirectly following feature "A_Submitted indirectly
followed by A_Cancelled" show that cancelled cases takes longer than normal
cases, which is counter-intuitive. After we looked at the data more deeply, we
noticed that this is caused by automatic cancellation, which takes 30 days and
causes long throughput time. For BPIC 2018 dataset, we find that the indirectly
following feature "finish payment indirectly followed by save" has a high rele-
vance with long throughput time Overall, our feature generation algorithm can
generate features related to the process and provide insightful patterns that are
worth looking into more carefully.

Discovering Process-Based Drivers for Case-Level Outcome Explanation 9
Table 2. Top 1 driver with different set of features on three datasets.

Features Top 1 Driver

BPIC 2017 A "Application Type==New credit" & "Requested Amount > 0"
BPIC 2017 B "Count of A_Cancelled > 0" & "Count of A_Submitted > 0" &

"Count of W_Call after offers > 4"
BPIC 2017 C "A_Cancelled directly followed by O_Cancelled" &

"A_Concept directly followed by W_Complete application" &
"Count of W_Call after offers > 4"

BPIC 2017 D "A_Submitted indirectly followed by A_Cancelled" &
"A_Cancelled directly followed by O_Cancelled" &
"Count of W_Call after offers > 4"

BPIC 2018 A "Year==2015" & "number parcels > 3" & "amount applied0 > 1135.24"
BPIC 2018 B "Count of initialize > 4" & " Count of begin preparations <= 0 " &

"Count of save > 0"
BPIC 2018 C "Count of initialize > 4" & " amount applied0 > 4025.81 " &

"finish payment directly followed by save"
BPIC 2018 D "finish payment indirectly followed by save" & "case year != 2017"

BPIC 2019 A "Item Category != Consignment" & "Item Type != Third-party"
BPIC 2019 B "Count of Record Invoice Receipt > 0" & "Item Type != Third-party"
BPIC 2019 C "Clear Invoice directly followed by Record Invoice Receipt" &

"Item Type != Third-party" & "Count of Record Invoice Receipt>=2"
BPIC 2019 D "Change Quantity indirectly followed by Record Goods Receipt" &

"Item Type != Third-party" & "Count of Record Invoice Receipt>=2"

Table 3. F1 Score of the driver with feature set.

Dataset and Feature Set Top 1 Top 5 Top 10

BPIC 2017 A 0.429 0.429 0.428
BPIC 2017 B 0.650 0.648 0.643
BPIC 2017 C 0.653 0.652 0.649
BPIC 2017 D 0.655 0.653 0.650

BPIC 2018 A 0.647 0.646 0.646
BPIC 2018 B 0.714 0.713 0.708
BPIC 2018 C 0.718 0.716 0.710
BPIC 2018 D 0.906 0.905 0.903

BPIC 2019 A 0.506 0.506 0.505
BPIC 2019 B 0.522 0.521 0.521
BPIC 2019 C 0.532 0.530 0.523
BPIC 2019 D 0.535 0.532 0.527

Table 4. F1 Score of the Top
1 driver with driver discovery
algorithm, NA means that the
algorithm cannot finish in 1
day.

Dataset Beam DT ES

BPIC 2017 D 0.655 0.608 0.664
BPIC 2018 D 0.906 0.904 NA
BPIC 2019 D 0.535 0.493 NA

Quantitative Assessment. Table 3 shows the F1 score of top drivers found
by our algorithm. Here top 5 is the average F1 score of top 5 drivers and Top 10
is the average F1 score of the top 10 drivers. We observe that adding the count
features can already increase the F1 score significantly compared with only using
case-level features, because we are focusing on long throughput time as the target
and usually long throughput time is closely related to rework, which is captured
by the count features. After adding the directly following and indirectly following
features, the F1 score also increases, indicating that new features are used in the
top drivers, revealing more causes that are related to the processes. Especially,
we see that after adding the indirectly following features, the F1 score of the
top-1 driver for the BPIC 2018 dataset (BPIC 2018 D) becomes 0.906, which
shows that the driver has very high relevance with the long throughput time.

Feature Selection Knob Analysis. We evaluate the how tuning the precision
and recall threshold would have an impact on the number of features generated,

10 L. Peng et al.

and the F1 score of the drivers found using the BPIC 2017 dataset. In Figure 2(a),
we fix the recall threshold, θr = 0.2 and tune the precision threshold θp, we see
that as θp becomes higher, there are less features, but the impact on the top 1 F1
is pretty insignificant. Similarly, In Figure 2(b), we fix the precision threshold,
θp = 0.5 and tune the recall threshold θr, we see that the top 1 F1 does not
change at all. The reason is that after the features are generated, we still need to
run the driver discovery algorithm, which would select the high quality features.
The selected features in the top drivers usually have high precision and recall,
which means that the result is not sensitive on the knob for feature selection.

Fig. 2. Knob Analysis.

5.3 Evaluating the Driver Discovery Algorithm

Quality of the driver We evaluate the F1 score of the found driver using
the three algorithms: beam search, decision tree (DT) and exhaustive search
(ES), and the result is shown in Table 4. For exhaustive search, it takes a long
time to run and cannot finish in 1 day for the BPIC 2018 and BPIC 2019
dataset. For BPIC 2017, exhaustive search achieved the highest F1 score at 0.664,
which is understandable because it searches the entire search space. However,
our beam search achieved a F1 score of 0.655, and the difference is less than one
percentage point. Compared to the decision tree algorithms, our beam search
can consistently outperform the decision tree algorithm significantly, by up to
4.7 percentage points.

Running Time Comparison. We use the synthetic dataset to verify the scala-
bility of driver discovery algorithm. Figure 3 shows the running time comparison
of different methods with varying size of datasets. As we can see, in Figure 3 (a),
as the number of rows increases, all three grows linearly, and decision tree and
beam search have similar running time, and they are 4x faster than exhaustive
search. In Figure 3 (b), as the number of columns grows, the running of the ex-
haustive search method grows polynomial and takes over 1 hour to finish when
the number of columns is greater than 100. However, both decision tree and
beam search algorithm grow almost linearly and thus have a better scalability,
and decision tree and beam search have similar running times.

Discovering Process-Based Drivers for Case-Level Outcome Explanation 11

Fig. 3. Running Time Comparison (left: Varying # rows; right: Varying # columns

6 Related Work
Feature Importance. Our work is related to estimating feature importance
in ML, which estimates the impact of each feature on model predictions [10].
Some interpretable ML models provides feature importance by themselves. For
example, in logistic regression [6], the weight of a feature indicates its importance.
In tree-based methods, such as decision tree [15] and random forest [4], the
feature importance is computed as the reduction of the prediction error brought
by that feature. Permutation importance [2] defines the importance of feature
by the decrease of the model performance when that feature value is randomly
shuffled. Chung et al. [5] propose an automated data slicing method to validate
ML models to find potential performance issues. Also, SHAP values [17] are used
to determine the importance of a feature in ML models to explain KPI changes.

Drivers discovered by our method also refer the most important features in a
dataset, but different from feature importance in ML models, our method does
not tie to a specific ML model and focuses on the impact of features on outcomes.

Decision Mining in Process Mining. In process mining, decision mining is
first introduced in [18] to identify the set of features as rules that define the
choices made in a process. An extension to support conditions with disjunctions
and inequalities is introduced by de Leoni et al. [14]. A typical limitation of
decision tree learning is the assumption of full deterministic process executions
and, therefore, non-overlapping rules. Mannhardt et al. [16] introduce an addi-
tional step to learn new decision trees for each leaf node in the first iteration for
wrongly classified instances. An alignment based approach was introduced in [13]
which additionally allows to discover rules associated with XOR-splits/joins and
certain types of loops. Our work focuses on the factors that influenced the out-
come and not only a particular choice. Consequently, our approach aims to find
factors on a case-level end to end instead of a local decision point.

7 Conclusion
We formally define the problem of driver discovery, which is a technique to ex-
plain case-level outcomes in process mining. We form three categories of process-
based features, and we propose a beam search method to automatically and

12 L. Peng et al.

efficiently discover effective, significant and interpretable drivers. We show the
effectiveness and efficiency of our approach.

References

1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proc. 20th int. conf. very large data bases, VLDB. vol. 1215, pp. 487–499. Santiago,
Chile (1994)

2. Altmann, A., Toloşi, L., Sander, O., Lengauer, T.: Permutation importance: a
corrected feature importance measure. Bioinformatics 26(10), 1340–1347 (2010)

3. Badakhshan, P., Wurm, B., Grisold, T., Geyer-Klingeberg, J., Mendling, J., vom
Brocke, J.: Creating business value with process mining. The Journal of Strategic
Information Systems 31(4) (2022)

4. Breiman, L.: Random forests. Machine learning 45, 5–32 (2001)
5. Chung, Y., Kraska, T., Polyzotis, N., Tae, K.H., Whang, S.E.: Slice finder: Auto-

mated data slicing for model validation. In: IEEE 35th International Conference
on Data Engineering (ICDE). pp. 1550–1553. IEEE (2019)

6. Cox, D.R.: The regression analysis of binary sequences. Journal of the Royal Sta-
tistical Society: Series B (Methodological) 20(2), 215–232 (1958)

7. van Dongen, B.: Bpi challenge 2017 (2017). https://doi.org/10.4121/uuid:5f3067df-
f10b-45da-b98b-86ae4c7a310b

8. van Dongen, B.: Bpi challenge 2019 (2019). https://doi.org/10.4121/uuid:d06aff4b-
79f0-45e6-8ec8-e19730c248f1

9. van Dongen, B., Borchert, F.F.: Bpi challenge 2018 (2018).
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972

10. Hooker, S., Erhan, D., Kindermans, P.j., Kim, B.: Evaluating Feature Importance
Estimates. arXiv (2018), https://arxiv.org/pdf/1806.10758.pdf

11. Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification
evaluations. International journal of data mining & knowledge management process
5(2), 1 (2015)

12. Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Beam search algorithms for mul-
tilabel learning. Machine learning 92, 65–89 (2013)

13. de Leoni, M., van der Aalst, W.M.P.: Data-Aware Process Mining: Discovering De-
cisions in Processes Using Alignments. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing. p. 1454–1461. SAC ’13, Association for Com-
puting Machinery, New York, NY, USA (2013)

14. de Leoni, M., Dumas, M., García-Bañuelos, L.: Discovering Branching Conditions
from Business Process Execution Logs. In: Fundamental Approaches to Software
Engineering, pp. 114–129. Springer Berlin Heidelberg (2013)

15. Lewis, R.J.: An introduction to classification and regression tree (CART) anal-
ysis. In: Annual meeting of the society for academic emergency medicine in San
Francisco, California. vol. 14. Citeseer (2000)

16. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision Min-
ing Revisited - Discovering Overlapping Rules. In: Advanced Information Systems
Engineering, pp. 377–392. Springer International Publishing (2016)

17. Padella, A., de Leoni, M., Dogan, O., Galanti, R.: Explainable process prescriptive
analytics. In: 2022 4th International Conference on Process Mining (ICPM). IEEE
(oct 2022)

18. Rozinat, A., van der Aalst, W.M.P.: Decision Mining in ProM. In: Lecture Notes
in Computer Science, pp. 420–425. Springer Berlin Heidelberg (2006)

