
Sparse Mixtures of Shallow Linear Experts for
Interpretable and Fast Outcome Prediction

Francesco Folino, Luigi Pontieri, and Pietro Sabatino

Institute for High Performance Computing and Networking (ICAR-CNR)
via P. Bucci 8/9C, 87036 Rende (CS), Italy

name.surname@icar.cnr.it

Abstract. In Process Mining research, Outcome Prediction entails predicting a
discrete, outcome-related property of an unfinished process instance from its par-
tial trace. Various outcome predictors discovered via Machine Learning (ML)
methods, like rule/tree ensembles and (deep) neural networks, have achieved top
accuracy performances. However, their opaqueness makes them unsuitable for
scenarios necessitating understandable outcome predictors. Aligning with recent
efforts to mine inherently interpretable predictors, we suggest training a sparse
Mixture-of-Experts, with the “gate” and “expert” sub-nets being Logistic Re-
gressors. This ensemble of specialized predictors is trained end-to-end while re-
stricting the number of input features used in the sub-nets, in the place of typical
multi-step/objective mining pipelines (e.g, global feature selection steps followed
by an ML one). This enables different experts to focus on varied input features for
predicting the outcomes of instances within their competency regions. Test results
on benchmark logs confirmed the ability of this approach to reach a compelling
trade-off between accuracy and interpretability, compared to current solutions.

Keywords: Process Mining · Machine Learning · XAI · Green AI

1 Introduction

Predictive Process Monitoring (PPM) methods [7] aim at extending process monitoring
mechanisms with the ability to forecast properties of ongoing process instances. This is
an active line of research in the area of Process Mining (PM), owing to the advantages
that such methods can bring in terms of run-time decision support and optimization. In
this context, we specifically address the (Process) Outcome Prediction problem [19],
i.e., the problem of predicting the outcome of an unfinished process instance, based on
its associated prefix trace (i.e., the partial sequence of events available for it).

Recently, different supervised learning approaches to this problem were proposed,
which allow for discovering an outcome prediction model from labeled traces. Out-
standing performances in terms of prediction accuracy have been achieved by two
classes of powerful predictors: (i) big ensembles of decision rules/trees discovered
with random forest or gradient boosting algorithms [19]; and Deep Neural Networks
(DNNs) (see [10] for a recent survey and benchmark) consisting, for instance, of mul-
tiple feed-forward layers with sequence-oriented RNNs [18] or CNN [8]. In particular,
the DNNs quickly became popular in this field thanks to their ability to automatically

2 F. Folino et al.

learn hierarchies of abstract features from raw data without requiring the analyst to pre-
liminary bring the log data into a tabular form based on some suitable trace encoding
method [19]. However, the function-approximation power of these models comes at the
cost of an opaque internal decision logic, which makes them unfit for real-life settings
where decision-makers want explainable predictions and/or interpretable predictors.

The call for transparent outcome prediction gave rise to a first wave of propos-
als that simply reused model-agnostic post-hoc explanation methods (like LIME and
SHAP) [5,3,11,13] or explanation-friendly DNN-oriented solutions (e.g., attention mod-
ules, gradient/LRP -based feature attribution) [20,17]. More recently, concerns on the
reliability of attention/attribution-based explanations [2] and the faithfulness, stability,
consistency and efficiency of post-hoc explanations [14,21] pushed PM researchers to
face the discovery of inherently-interpretable predictors [16,15,9].

Related works and their limitations Two kinds of interpretable outcome predictors,
both leveraging Logistic Regression (LR) models as a building block, were recently
used in [16,15] (where an evaluation framework for interpretable outcome predictors
was introduced), starting from flattened (through aggregation encoding [19]) log traces:
(i) Logit Leaf Model (LLM), a sort of decision tree where each leaf hosts an LR sub-
model; and (ii) Generalized Logistic Rule Model (GLRM) where a single LR model
is built upon the original feature and novel features, defined as conjunctive rules over
subsets of the former and derived via column generation. Both LLM and GLRM mod-
els were shown to improve plain LR predictors, thanks to their ability to capture some
non-linear input-output dependencies. An approach leveraging a neural implementation
of fuzzy logic, named FOX, was proposed in [9], which can extract logical outcome-
prediction rules from aggregation-encoded traces. Its result specifically consists of easy-
to-interpret IF-THEN rules, each containing a fuzzy set per input feature and a mem-
bership score per outcome class. The domain of each data feature is split into three
“linguistic” fuzzy sets, so that 3k rules are learnt by training this model over flat k-
dimensional data, after selecting the best k features with an MI-based method.

In principle, learning an LLM consisting of multiple LRs, as proposed in [16,15]
LLM could help find an interpretable predictor. However, if using no mechanisms for
limiting the number of data features and the size of the decision tree, cumbersome
models can be obtained, as noted in [15], which hardly allow the user to grasp a full
and precise understanding of model predictions. On the other hand, as noted in [15],
the GLRM method is very demanding in terms of training examples (owing to its sen-
sitiveness to outliers and the sparsity of its transformed space) and computation time
(because of its column generation step). Finally, we are afraid the global feature selec-
tion and (3-way) feature binning performed in [9] allow the user to control the size of
each prediction rule, but at the risk of losing some information and prediction accuracy.

Goal and contribution Our research work was aimed at directly seeking a (locally)
optimal ensemble of specialized (and complementary) LR models by training a Mixture
of Experts (MoE) [6] neural network, which consists of multiple “experts” (the LR
models) and a sparse “gate” module assigning any data instance to one of the experts.
The proposed approach shares some conceptual and technical features with a method
presented in [1]. Specifically, in [1] several MoE variants, differing in the forms of

Interpretable Sparse Mixtures of Linear Outcome Predictors 3

the gate (black-box vs. interpretable) and of the experts (only interpretable vs. also
including a DNN), are trained to predict a numerical target, using a combined loss
function including many regularization terms (e.g., linked to the prediction accuracy of
both the MoE and its gate module and the degree of load balance among the experts).

Our approach to discovering an interpretable MoE-based outcome predictor, called
MoE-OPM, relies upon several ad hoc design choices and novel technical solutions:

– For the sake of interpretability and scalability, the gate and expert models play as
LR classifiers (in fact, all these modules are one-layer neural networks with lin-
ear activations and a final softmax/sigmoid link function); this allows for directly
learning several local LR models and an associated interpretable assignment func-
tion like in LLM models [16,15].

– Differently from [1], we let the user control the complexity (and thus the inter-
pretability) of the model by fixing the maximum number kTop of features that
the gate and each expert sub-net can use, as well as the desired number m of ex-
perts. However, instead of resorting to a preliminary global feature selection step as
in [16] and [9], the model is trained using all the original data features, while using
L1-based regularization terms to encourage model sparsity; the parameters of each
trained sub-net (i.e. either the gate or an expert) are then pruned in a “feature-based”
way, by zeroing all but the kTop most important input features of the sub-net. Each
expert can thus use a specific subset of input features when making predictions for
the data instances assigned to it.

– We prefer to avoid enforcing expert load balancing through an explicit loss term, as
in [1], to prune redundant experts and further reduce the model size.

Tests on benchmark logs confirmed that the approach achieves compelling accuracy
scores (w.r.t. state-of-the-art interpretable outcome-prediction models [9,16,15]), and
supports compact and fully faithful prediction explanations (in the form of feature-
attribution scores) –see Section 4.3 for an example from a real healthcare process.

2 Background and problem statement

As usual, assume that, for every execution instance of the process under analysis (a.k.a.
process instance), a distinguished trace is stored, which consists of a (temporally or-
dered) sequence of (log) events, plus several instance-level attributes that do not vary
during the process execution. Each event is a tuple representing a process execution
event, which usually stores information on the execution of a process activity (e.g.,
which activity was executed, the executor, a timestamp, etc.).

At run time, during the unfolding of a process instance, a trace is recorded incre-
mentally to store the events observed for that instance. Such a trace is called a prefix
trace and represents a kind of pre-mortem log data. Let us denote as U the universe of
all possible prefix traces produced by the business process under analysis.

Problem OPM discovery This work aims to discover a predictive model for (proba-
bilistically) forecasting the outcome class of a running process instance. As we want to
exploit neural networks to address this problem, standard data transformation methods

4 F. Folino et al.

are used to pre-process the tabular trace representation described so far: the value of
each categorical attribute, including the outcome class, is eventually represented in a
one-hot encoding (we do not employ dense embeddings, for the sake of explainability),
whereas any numerical attribute is just made undergo min-max normalization.

Let us assume that each trace τ ∈U can be turned into a real-valued vector x ∈ Rd

(for some suitable d ∈N), and its class label is encoded as a one-hot vector y∈ [0,1]c−1,
where c is the number of outcome classes. For the sake of simplicity, and w.l.o.g, let
us focus from now on on the representations obtained with the aggregation encoding of
[19] in the case of two outcome classes (i.e., c = 2).

Under this perspective, an OPM can be re-defined as a neural network N that en-
codes a function fN : Rd → [0,1] mapping the vectorial representation x of any (prefix)
trace in U to an estimate of the probability that x belongs to the second class (i.e., the
one associated with label 1). Then, the inductive learning problem faced in this work,
named OPM discovery from now on, amounts to training a neural net N of this form
out of a given collection of class-labeled prefix traces, once turning them into a pair
(X ,Y) of tensors that store (numerical representations of) the propositional encodings
of these traces and their associated outcome labels, respectively.

3 Solution approach

Similarly, to [1], we rephrase the problem of learning of a OPM as discovering a special
(extremely sparse) kind of Mixture of Experts (MoE) ensemble, that consists of multiple
specialized outcome-oriented classifiers, named “experts”, plus a “gate” module that
routes each data sample to one of the experts. For the sake of readability, the conceptual
architecture of a standard MoE is sketched in Figure 1.

Definition 1 (MoE-OPM). A Mixture-of-Experts-OPM (MoE-OPM) is a neural net of
the form N = 〈Ng,N1, . . . ,Nm〉 that assembles two kinds of sub-nets: (i) N1, . . . ,Nm,
called experts, which encode different (local) OPM functions f1, . . . , fm ∈ [0,1](R

d),
each mapping any trace encoding to an estimate of the probability that the respec-
tive process instance will belong to the second outcome class; and (ii) Ng, named
gate, which encodes a routing function g : Rd → ∆m (with ∆m denoting the proba-
bility simplex over {1, . . . ,m}) that maps any trace encoding to a categorical proba-
bility distribution over the (indexes of the) experts. As a whole, N is itself an OPM
that encodes the function f : Rd → [0,1] defined as follows: f (x) , fk(x) such that
k = argmaxk∈{1,...,m} g(x)[k] and g(x)[k] is the k-th component of the probability vector
returned by g when applied to x. �

The experts and the gate could be instantiated using different models, provided they
all are differentiable. In [1], various alternatives were proposed to implement the experts
and the gate. In this work, for the sake of interpretability and memory/computation sav-
ing, we prefer to instantiate each MoE-OPM taking the following design choices: (a)
expert sub-nets N1, . . . ,Nm are all implemented as d-to-1 one-layer feed-forward nets
with linear activation functions, followed by a standard sigmoid transformation; (b) the
gate sub-net Ng is a one-layer d-to-m feed-forward network with linear activation func-
tions followed by softmax normalization. This makes each expert and the gate behave
as (standard/multinominal) LR models, usually considered interpretable models.

Interpretable Sparse Mixtures of Linear Outcome Predictors 5

Fig. 1: Standard MoE architecture (for m = 3 experts). Each expert sub-net implements
a specific classification function fk, while gate’s function fg returns per-expert compe-
tency scores g(x)[1],g(x)[2],g(x)[3] summing up to 1. In our MoE-OPM variant, the
gate, and experts are LR models, the gate is biased to return sparse competency scores,
and x is classified by using only the expert getting the highest score.

Algorithm MoE-OPM Discovery Such an ensemble model is discovered through Algo-
rithm 1, named MoE-OPM Discovery. This algorithm takes several training instances
as input, through tensors X (vectorized prefix traces) and Y (binary class labels), and
the percentage valPerc of them to use for validation. To control the complexity of both
the gate and expert sub-nets in the MoE-OPM, the user can set both the desired number
m of experts and an upper bound kTop to the number of input features that each of these
sub-nets can use at prediction time. This feature-selection-like requisite is fulfilled by
zeroing the weights of the connection parameters related to all the input features of a
sub-model, but the kTop of them that look the most relevant ones for the sub-model
(see later on). Further arguments are: the maximum number of SGD-based epochs for
training the model (nEp1) and for re-tuning it after feature-weight pruning (nEp3), the
learning rates for training the gate (ηg) and each expert (ηe), and the weights λR and λ ′R
of the loss regularization terms. To support ablation studies, one can set kTop = ALL,
meaning no parameters are pruned, and the MoE-OPM can use all the input features.

The algorithm consists of four computation phases: (i) train a randomly-initialized
MoE-OPM end-to-end (Step 4); (ii) fine-tune the gate sub-net while keeping the pa-
rameters of the experts frozen (Step 5); (iii) zero all the parameter weights (Steps 7-8),
in both the gate and the experts, that do not relate to the kTop input features (see later
on); (iv) re-train (for nEp3 epochs) the MoE-OPM end-to-end to possibly adapt it to the
removal of parameters (Step 19). All the training phases (i, ii and iv) are performed with
procedure TRAIN, which implements a standard SGD-based optimization method when
setting freeze = true. Otherwise (freeze = false), the procedure only fine-tunes the gate
while keeping all experts frozen. Note that all the experts contribute to each ensemble
prediction during the training, and the training loss is estimated as in a standard MoEs.

6 F. Folino et al.

Algorithm 1 MoE-OPM Discovery (abstracting from SGD optimization details).
Input: tensors X and Y storing the flat representations of prefix traces and their associated out-

come classes; no. m ∈ N∪{ALL} of experts and max. no. kTop ∈ N∪{ALL} of input fea-
tures to be used in each MoE-OPM subnet; validation percentage valPerc∈ (0,100); numbers
nEp1,nEp2,nEp3 ∈N of max. epochs for the training, gate fine-tuning, and (post-pruning) re-
training phases, respectively; learning rates ηg,ηe ∈ R+ for training the gate and the expert
modules, respectively; regularization weights λR,λ

′
R ∈ R+ (see Sect. 3);

Output: an OPM 〈Ng,N1, . . . ,Nm〉.
1: split [X ;Y] into training and validation sets [XT ;YT] and [XV ;YV], respectively, such that
|XV |= |YV |= b|X |× valPerc/100c;

2: create a OPM N = 〈Ng,N1, . . . ,Nm〉 with randomly-initialized parameters Θ ;
3: let Θ |g,Θ |1, . . . ,Θ |m denote the parameters of Ng,N1, . . . ,Nm, respectively;
4: TRAIN(N ,XT ,YT ,XV ,YV ,b,nEp1,ηg,ηe, f reeze = false); // train the OPM end-to-end
5: TRAIN(N ,XT ,YT ,XV ,YV ,b,nEp1,ηg,ηe, f reeze = true); // fine-tune the gate only
6: if kTop 6= ALL then
7: zero all Ng’s weights but those linked to its top kTop input features; // see below Eq. 2
8: zero all Nq’s weights, for q ∈ {1, . . . ,m}, but those with the top kTop absolute values;
9: TRAIN(N ,XT ,YT ,XV ,YV ,b,nEp3,ηg,ηe, f reeze = false); // re-tune N end-to-end

10: end if
11: return N

Loss and feature selection Let Nmoe = 〈Ng,N1, . . . ,Nm〉 be a given MoE-OPM, NE
be the sub-net consisting of all its experts N1, . . . ,Nm, and weights(N) be a function
returning the connection-weight parameters of any neural net N . Then, for given paired
sub-tensors X and Y , storing n training instances (denoted by X [1], . . . ,X [n]) and their
associated class labels (denoted by Y [1], . . . ,Y [n]), respectively, the loss of N on X ,Y
is computed as Lacc(N ,X ,Y)+λR ·Lreg(Ng)+λ ′R ·Lreg(NE) with:

Lacc(N ,X ,Y) =
1

n ·m

n

∑
i=1

log

(
m

∑
k=1

g(X [i])[k] ·
(

1+ e fk(X [i])·(1−2·Y [i])
))

(1)

Lreg(N) =
∑θ∈weigths(N) |θ |

|{θ | θ ∈ weigths(N)}|
(2)

The accuracy loss in Eq. 1, as discussed in both [1] and [6], is expected to favor expert
specialization. The loss term in Eq. 2, looking like a classic regularization term (as in
Lasso logistics regression), is meant to shrink less relevant weights to help spot the
kTop most important input features and retain only the weights related to them.

As concerns weight pruning, for each expert Nk, we rank the weights in weights(Nk)
based on their absolute values, from the highest to the lowest, and zero all but the first
kTop of them. A “channel-wise” pruning is performed instead on Ng, based on group-
ing its weights by the input features they relate to: the group of each input feature Ai
gathers the weights of all the connections in Ng lying on a path starting from the i-th
input node of Ng. After ranking these weight groups based on their aggregated mag-
nitude scores (each score is the absolute average value of the weights in a group), we
eventually set to 0 the weights of Ng that do not belong to one of the top kTop groups.

Interpretable Sparse Mixtures of Linear Outcome Predictors 7

In the implementation of our approach, each node in the input layer is paired with
a multiplicative binary mask. This way, the parameters of each sub-model (i.e. the gate
or an expert) can be pruned by setting to 0 all masks but those of its top kTop features.

4 Experiments

For the sake of comparison, the proposed algorithm (implemented in Python 3.11.4 and
PyTorch 2.0.1, partly reusing code released in [1]) has been tested against several pre-
processed datasets 1, derived from benchmark logs BPIC 2011 and Sepsis that were
also used in [9,19,16,15]. All these datasets, in tabular format, were built by making the
respective prefix traces undergo the aggregation encoding (see Sect. 2) after extending
them all with timestamp-derived temporal features (e.g., weekday, hour, etc.).

Essentially, log BPIC 2011 stores the clinical history of Gynaecology patients in a
Dutch hospital. Its events represent applied treatments and procedures. Four datasets,
namely bpic2011 1, bpic2011 2, bpic2011 3, and bpic2011 4, were derived from
this log by assigning each trace an outcome label based on the satisfaction of an LTL
rule (labels ‘1’ for violation and ‘0’ for adherence) —see [19] for details.

Log Sepsis stores care-flow data of Sepsis patients in a Dutch hospital, from Emer-
gency Room (ER) registration to final discharge. Three datasets were derived from it by
assigning each trace a boolean class label [19] equal to 0 iff the trace concerns an ER
revisit within 28 days after discharge (dataset sepsis 1), an ICU admission (dataset
sepsis 2), or a discharge type different from ‘Release A’ (dataset sepsis 3).

Test procedure, parameter setting and competitors Each dataset was partitioned into
training, validation and test sets exactly as done in [9,19,15]: after sorting the traces
based on their starting time, the first 80% of them were used for training and the re-
maining 20% for testing each OPM; the last 20% of the training set was used as the
validation set. The accuracy of each discovered model was evaluated by computing the
AUC score for all test prefixes containing at least two events, as done in [9,19,15].

Algorithm MoE-OPM Discovery was run with a fixed configuration of all parame-
ters but λR, kTop and b, namely: nEp1 = nEp2 = 100, nEp3 = 0, m = 6, ηe = 10−5

and ηg = 10−2. By the way, the number m of experts was chosen empirically (af-
ter trying several values in [2..16] for it), since this choice seemed to ensure a good
enough accuracy-vs-simplicity trade-off. The following configurations were used for
the regularization weights λR and λ ′R and the number kTop input features per sub-net
in the tests performed on dataset bpic2011 3: (kTop = 2;λR = λ ′R = 0.3), (kTop =
4;λR = λ ′R = 0.4), (kTop = 6;λR = λ ′R = 0.6) and (kTop = 8;λR = λ ′R = 0.8). In the
other tests we evaluated the configurations (kTop = 2;λR = 0.1), (kTop = 4;λR = 0.2),
(kTop = 6;λR = 0.4) and (kTop = 8;λR = 0.6), with λ ′R set to 0.3, 0.4, 0.6 and 1.0,
respectively (for datasets sepsis 1, sepsis 2 and sepsis 3) or to the same value as
λR (for the remaining datasets). For each dataset, the batch size b was given a value in
[4..128] chosen empirically, namely: b = 4 for bpic2011 3, b = 4 for sepsis 2 and
sepsis 3 and all the other datasets derived from BPIC 2011, and b = 32 for sepsis 1.

1 https://github.com/vinspdb/FOX

https://github.com/vinspdb/FOX

8 F. Folino et al.

Table 1: AUC scores obtained by: algorithm MoE-OPM Discovery, run with a fixed
number (m = 6) of experts and several values of kTop (namely, 2,4,6,8 and ALL), the
baseline method 1-LR and three state-of-the-art competitors. For each dataset, the best
score is shown in Bold and underlined; each score obtained by MoE-OPM Discovery
is shown in Bold if it outperforms all the competitors and in Italic otherwise.

Dataset
MoE-OPM Competitors

kTop 1-LR FOX GLRM
2 4 6 8 ALL [9] [15]

bpic2011 1 0.97 0.95 0.96 0.98 0.88 0.94 0.97 0.92
bpic2011 2 0.85 0.84 0.86 0.97 0.87 0.94 0.92 0.97
bpic2011 3 0.95 0.98 0.96 0.98 0.91 0.97 0.98 0.98
bpic2011 4 0.96 0.98 0.98 0.98 0.81 0.68 0.89 0.81
sepsis 1 0.87 0.86 0.89 0.88 0.62 0.47 0.58 0.47
sepsis 2 0.54 0.80 0.78 0.88 0.71 0.76 0.73 0.73
sepsis 3 0.84 0.81 0.86 0.82 0.69 0.70 0.68 0.65

This experimental analysis encompasses the outcome-predictor discovery methods
FOX [9] and GLRM [15]. For these methods we here report the results appeared in the
respective publications, remarking that they were obtained using exactly the same pre-
processed data and test procedure as described above. As a further term of comparison,
we consider a baseline method, denoted as 1-LR, that simply returns one LR model —
we simulated this method by running Algorithm MoE-OPM Discovery with m = 1 and
kTop = ALL. For the sake of fair comparison, we are not considering the LLM models
discovered in [15], as they were obtained by fixing no bound on the number and size
(i.e. the number of non-zero feature coefficients) of LR models appearing in leaf.

4.1 Prediction accuracy analysis

Table 1 reports the AUC scores obtained by the 6-expert MoE-OPM models. Notably,
MoE-OPM Discovery consistently outperforms the baseline 1-LR in all kTop configura-
tions when tested on several datasets, specifically bpic2011 1, bpic2011 4, sepsis 1,
and bpic2011 4. For the remaining datasets, there is always at least one kTop con-
figuration where MoE-OPM Discovery performs better than the baseline. In particu-
lar, on average, MoE-OPM Discovery achieves an AUC improvement of more than
20% over 1-LR, with peaks reaching beyond 80% (e.g., in the case of sepsis 1 with
kTop ∈ {6,8}). This confirms that training multiple local LR outcome predictors usu-
ally improves the performance of training a single LR model on all the data features
(as done by 1-LR). In addition, MoE-OPM Discovery always surpasses state-of-the-art
methods like FOX and GLRM on all the datasets but bpic2012 2 and bpic2012 3,
where MoE-OPM Discovery and GLRM perform on par.

Notably, MoE-OPM Discovery obtains outstanding achievements with different set-
tings of kTop 6= ALL, showing that this hyper-parameter helps improve model accu-
racy (besides reducing model complexity). Precisely, the advantage of exploiting the
feature-reduction capability of MoE-OPM Discovery, rather than making it just re-
turn a MoE-OPM trained on all the input features (kTop = ALL), is neat on all the

Interpretable Sparse Mixtures of Linear Outcome Predictors 9

datasets but bpic2012 2. As a general behavior, when using very few features (namely,
kTop = 2,4), MoE-OPM Discovery tends to perform worse than when trained with a
slightly more extensive feature set (namely, kTop = 6,8) due to information loss. How-
ever, on dataset bpic2011 1 (resp. bpic2011 4), even when using just two (resp. four)
features, MoE-OPM Discovery gets outstanding AUC scores. In our opinion, such abil-
ity to automatically focus on a few relevant features is precious when seeking inter-
pretable models and explainable predictions.

The fact that the proposed approach managed to achieve compelling AUC perfor-
mances when using less than 9 input features per sub-model (i.e. when setting kTop≤
8), is an important finding, as far as concerns the interpretability of the models returned
and their suitability for prediction explanation. A brief discussion on the description and
explanation complexities of the models discovered by both this approach and FOX are
provided in the following subsection. Such a discussion is not conducted for the LLM
and GLRM models discovered from the datasets considered in this work, since we have
not found information on this regard in the current version of [15]. Anyway, we note that
all LLM models discovered from (a dataset derived from) logs BPIC 2011 and Sepsis
includes at least 290 and 84 features per LR model, respectively, and may well contain
hundreds of LR models (see [15] for the case of bpic2011 2). This makes it hard for
process stakeholders/analysts to understand such a model and assess its trustworthiness.

4.2 Complexity/interpretability and efficiency of the discovered OPMs

Generally, the lower the description complexity of a prediction model, the easier to
interpret (and to trust/debug) the model and explain its predictions. In the cases of
MoE-OPM Discovery and of baseline 1-LR, description complexity is computed by
counting the non-zero parameters appearing in the respective LR (sub-)models (i.e., in
the experts and gate of a MoE-OPM vs. in the singleton LR).

In contrast, a FOX model’s complexity can be quantified as the total number of con-
ditions appearing (as conjuncts) in the respective fuzzy rules. Based on [9] if applying
FOX to a filtered version of dataset bpic2011 1 (resp., bpic2011 1, . . ., bpic2011 4,
sepsis 1, . . ., sepsis 3) containing only the top 4 (resp., 7, 6, 2, 5, 4 and 6 data fea-
tures), a model consisting of 81 (resp., 2187, 729, 9, 243, 81, and 729) fuzzy rules is
found. This means that the complexities of these models (where all the rules have as
many terms as the selected features) range from 18 to 15309.

To give an idea of the better accuracy-interpretability trade off achieved by al-
gorithm MoE-OPM Discovery on all the datasets (excluding bpic11 3), for each of
them let us focus on the minimal value of kTop that allowed the algorithm to match or
surpass the AUC achievements of all the competitors, i.e. kTop = 8 on bpic2011 1,
bpic2011 2, kTop = 4 on bpic2011 3 and sepsis 2, and kTop = 2 on all the re-
maining datasets. Since the parameters (including bias vectors) in these MoE-OPMs
are 2× (kTop + 1)×m, where m = 6 is the desired number of experts, their com-
plexities are bounded by 60, 108, and 36, respectively. This lead us to believe that
MoE-OPM Discovery can find more compact models than FOX.

On the other hand, when using a MoE-OPM to predict a novel trace x, a faithful local
explanation of the prediction can be obtained by looking at the kTop feature weights
of the LR expert that has been exploited to make the prediction. In the case of a FOX

10 F. Folino et al.

Fig. 2: Example MoE-OPM discovered by MoE-OPM Discovery (with kTop = 4) from
dataset sepsis 3: parameter weights of the six LR experts. The weights, linking each
expert to one input feature, are shown in an orange-to-blue color scale based on their
values —the lower (resp., higher) the value, the closer to orange (resp., blue).

model, though one could focus on a few top-fitting fuzzy rules (or just on the best-fitting
one) to explain the prediction returned for x, several other rules may have impacted the
prediction substantially. This descends from the fact in a FOX model the prediction for
x is made by fusing (via weighted averaging) those of all of its fuzzy rules (or, at least,
of those with non-zero fit) while our MoE-OPM uses only one of its experts to this end.

Notably, a MoE-OPM can make an outcome prediction in a speedy and compute-
efficient way through a forward pass throughout two single-layer linear sub-nets —
i.e., the gate and the chosen expert, featuring m× (k+ 1) and m× (k+ 1) parameters,
respectively. This computation entails (2×kTop+1)× (m+1) FLOPs (Floating Point
Operations) —i.e., less than 120 FLOPs when fixing m = 6 and kTop ≤ 8 as in the
experiments described so far.

4.3 Qualitative results: an example of discovered MoE-OPM

Figure 2 shows the input features and associated weights that are employed by the six
LR experts discovered when running algorithm MoE-OPM Discovery with kTop = 4
on dataset sepsis 3, for which the outcome-prediction task estimates the probabil-
ity that an in-treatment patient will leave the hospital with the prevalent release type
(namely ‘Release A’). As a whole, only 20 of the 86 data features are used by the ex-
perts, but the experts use (specific subsets of) these features quite differently. In a sense,
the experts have learned different input-output relationships for dealing with different
process-outcome use cases.

For instance, Expert 0 emphasizes a positive impact of ‘Activity IV Liquid’ (in-
travenous fluid treatment) on predicting class 1, and negative influence from ‘Activ-

Interpretable Sparse Mixtures of Linear Outcome Predictors 11

ity Release B’ (a specific discharge type), ‘mean hour’ (certain times of day), and
‘org:group other’ (specific hospital groups).

Expert 1 attributes instead notable positive influence (on predicting this class) from
‘DiagnosticArtAstrup’ (arterial blood gas measurement) and ‘org:group W’ (a hospital
staff team) and negative influence from ‘Activity Release B’ and ‘org:group G’ (an-
other hospital group).

Expert 2 focuses on scenarios where ‘Activity IV Liquid’ and certain hospital groups
(‘org:group A’, ‘org:group T’, ‘org:group V’) correlate negatively with a class-1 out-
come. Analogous interpretations can be extracted from the remaining expert models,
which also focus on specific activities and hospital groups, either positively or nega-
tively correlated with the target outcome class.

Focusing on such a small number of feature importance scores, a domain expert can
quickly inspect and assess the internal decision logic of the model and get simple, faith-
ful explanations for its predictions. However, evaluating the actual practical relevance
of such explanations (possibly through a user study) is left to future work.

5 Conclusion and future work

We proposed an approach to learning an MoE-like interpretable outcome prediction
model consisting of multiple local LR-based expert OPM and an LR-based gate module
that dynamically selects one expert to predict the outcome of a novel process instance,
say x. The discovered model transparently shows the features of x that influenced the
prediction result most and the choice of routing x to a specific expert while giving the
user complete control over the size of the discovered OPM. Besides ensuring better
interpretability, this feature (combined with the conditional computation scheme im-
plemented by the gate) makes our approach appealing for green AI applications [12])
where compute-efficient ML solutions are required. Despite using a lossy encoding
of log data, one-layer linear sub-nets, and a rough model pruning strategy, the pro-
posed approach has achieved a good trade-off between outcome-prediction accuracy
and model/explanation complexity on popular benchmark logs.

As to future work, we will investigate: (i) converting LR-like sub-models returned
by our approach into logic rules, which some users may prefer to feature-attribution
scores, (ii) tuning hyper-parameters kTop and m automatically; (ii) leveraging prior
knowledge and (iv) adapting our framework to predict violations to declarative models
[4]. We also plan to expand the empirical study by including more datasets, scalability,
and temporal stability analyses [18] and more discussion of qualitative results.

Acknowledgment. This work was partly supported by project FAIR - Future AI Re-
search (PE00000013), under the NRRP MUR program funded by the EU-NGEU, and
project PINPOINT, under program PRIN, funded by the Italian Ministry of University
and Research (grant no. B27G22000160001).

References
1. Abdelsalam Ismail, A., et al.: Interpretable mixture of experts for structured data pp. arXiv–

2206 (2022)

12 F. Folino et al.

2. Bibal, A., et al.: Is attention explanation? An introduction to the debate. In: Proc. of 60th
Meeting of the Association for Computational Linguistics (ACL’22). pp. 3889–3900 (2022)

3. Elkhawaga, G., M.Abu-Elkheir, Reichert, M.: Explainability of predictive process monitor-
ing results: Can you see my data issues? Applied Sciences 12(16), 8192 (2022)

4. Fionda, V., Guzzo, A.: Control-flow modeling with declare: Behavioral properties, com-
putational complexity, and tools. IEEE Trans. on Knowledge and Data Engineering 32(5),
898–911 (2020)

5. Galanti, R., et al.: Explainable predictive process monitoring. In: Proc. of 2nd Intl. Conf. on
Process Mining (ICPM’20). pp. 1–8 (2020)

6. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts.
Neural Computation 3(1), 79–87 (1991)

7. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business
processes: a survey. IEEE Trans. on Services Computing 11(6), 962–977 (2017)

8. Pasquadibisceglie, V., et al.: Orange: outcome-oriented predictive process monitoring based
on image encoding and cnns. IEEE Access 8, 184073–184086 (2020)

9. Pasquadibisceglie, V., Castellano, G., Appice, A., Malerba, D.: Fox: a neuro-fuzzy model for
process outcome prediction and explanation. In: Proc. of 3rd Intl. Conf. on Process Mining
(ICPM’21). pp. 112–119 (2021)

10. Rama-Maneiro, E., Vidal, J., Lama, M.: Deep learning for predictive business process mon-
itoring: Review and benchmark. IEEE Trans. on Services Computing (2021)

11. Rizzi, W., Francescomarino, C.D., Maggi, F.M.: Explainability in predictive process moni-
toring: When understanding helps improving. In: Proc. of 18th Intl. Conf. on Business Pro-
cess Management (BPM’20) (2020)

12. Salehi, S., Schmeink, A.: Data-centric green artificial intelligence: A survey. IEEE Trans. on
Artificial Intelligence pp. 1–18 (2023). https://doi.org/10.1109/TAI.2023.3315272

13. Sindhgatta, R., Moreira, C., Ouyang, C., Barros, A.: Exploring interpretable predictive mod-
els for business processes. In: Proc. of 18th Intl. Conf. on Business Process Management
(BPM’20). vol. 12168, pp. 257–272 (2020)

14. Slack, D., Hilgard, A., Singh, S., Lakkaraju, H.: Reliable post hoc explanations: Modeling
uncertainty in explainability. Advances in Neural Information Processing Systems 34, 9391–
9404 (2021)

15. Stevens, A., Smedt, J.D.: Explainability in process outcome prediction: Guidelines to obtain
interpretable and faithful models. arXiv:2203.16073 (2023)

16. Stevens, A., De Smedt, J., Peeperkorn, J.: Quantifying explainability in outcome-oriented
predictive process monitoring. In: Process Mining Workshops. pp. 194–206 (2022)

17. Stierle, M., Weinzierl, S., Harl, M., Matzner, M.: A technique for determining relevance
scores of process activities using graph-based neural networks. Decision Support Systems
144, 113511 (2021)

18. Teinemaa, I., Dumas, M., Leontjeva, A., Maggi, F.M.: Temporal stability in predictive pro-
cess monitoring. Data Mining and Knowledge Discovery 32, 1306–1338 (2018)

19. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process
monitoring: Review and benchmark. ACM Trans. on Knowledge Discovery from Data 13(2),
1–57 (2019)

20. Wickramanayake, B., et al.: Building interpretable models for business process prediction
using shared and specialised attention mechanisms. Knowledge-Based Systems 248, 108773
(2022)

21. Zhou, Y., Booth, S., Ribeiro, M.T., Shah, J.: Do feature attribution methods correctly at-
tribute features? In: Proc. of AAAI Conf. on Artificial Intelligence (AAAI’22). pp. 9623–
9633 (2022)

https://doi.org/10.1109/TAI.2023.3315272
https://doi.org/10.1109/TAI.2023.3315272

	Sparse Mixtures of Shallow Linear Experts for Interpretable and Fast Outcome Prediction

