
Detecting Anomalous Events in Object-centric
Business Processes via Graph Neural Networks

Alessandro Niro and Michael Werner

University of Amsterdam, Amsterdam, The Netherlands
{a.niro, m.werner}@uva.nl

Abstract. Detecting anomalies is important for identifying inefficien-
cies, errors, or fraud in business processes. Traditional process mining
approaches focus on analyzing ‘flattened’, sequential, event logs based
on a single case notion. However, many real-world process executions
exhibit a graph-like structure, where events can be associated with mul-
tiple cases. Flattening event logs requires selecting a single case identifier
which creates a gap with the real event data and artificially introduces
anomalies in the event logs. Object-centric process mining avoids these
limitations by allowing events to be related to different cases. This study
proposes a novel framework for anomaly detection in business processes
that exploits graph neural networks and the enhanced information of-
fered by object-centric process mining. We first reconstruct and represent
the process dependencies of the object-centric event logs as attributed
graphs and then employ a graph convolutional autoencoder architecture
to detect anomalous events. Our results show that our approach provides
promising performance in detecting anomalies at the activity type and
attributes level, although it struggles to detect temporal anomalies.

Keywords: Object-centric Process Mining · Graph Neural Networks ·
Anomaly Detection

1 Introduction

Process mining aims to discover, monitor, and enhance existing business pro-
cesses by leveraging data traces generated by their execution and stored into
event logs [2]. Business processes can be defined as a set of activities that enable
the organization to achieve a specified goal. They are seldom friction-less. Errors,
inefficiencies, and fraud during process executions can lead to significant losses
for the organizations. The ability to detect and mitigate harmful anomalies is
crucial for maintaining the effectiveness and efficiency of business operations.

Traditional approaches to process mining rely on ‘flattened’ event logs. Events
are characterized by a single case identifier [1] and process instances are as-
sumed to be strictly ordered sequences of events. Anomaly detection techniques
have mostly focused on approaches applied to flattened event logs. Conformance
checking approaches [10,9,12] focus on the detection of deviations of process in-
stances, as captured by the event logs, from an a priori process model, which

2 A. Niro and M. Werner

is a necessary input for this type of techniques. Machine learning approaches,
based on distance measures [21,30] or reconstruction errors [27,28,26,20], have
been focused on detecting anomalies directly from event logs, adopting methods
suited for strictly ordered sequences of events.

However, in real-world processes there usually exist multiple potential iden-
tifiers. A single case notion leads to a loss of information (i.e. deficiency , conver-
gence and divergence issues [2]). Object-centric process mining [18] is an emerg-
ing paradigm that drops the single case assumption and instead assumes events
can be associated to any number of objects (cases) of different types, with the
aim to overcome the limitations of traditional approaches and provide a more
accurate depiction of the actual process. Compared to the strictly ordered linear
structure of process instances resulting from the single case notion, object-centric
process instances can be naturally represented as directed graphs [5].

This study introduces an approach for anomaly detection in business process
that is natively designed for object-centric event logs. We propose an unsuper-
vised machine learning approach based on GNNs, and specifically on a graph
convolutional autoencoder (GCNAE) [25,33] architecture.

The approach is illustrated in Figure 1. It first reconstructs the dependencies
between events within an object-centric event log as a set of attributed graphs,
then it uses the GCNAE to compute the events’ anomaly scores. We employ a
simple heuristic based on the inter-quartile range (IQR) to automatically set the
threshold and label the anomalies without the need of prior knowledge of the
contamination rate of the data.

The main contribution of this study is the introduction of a novel unsuper-
vised anomaly detection approach for business processes, leveraging GNNs and
the enriched event data structure offered by object-centric process mining. We
are not aware of any other studies that employ GNN on object-centric events
logs for anomaly detection. Our approach does not rely on prior information
about the process model, contamination rate, or a clean training set, making it
suitable for real-world applications.

We evaluated the performance of our approach on two different, publicly
available1 object-centric event logs: one a synthetic dataset and the other a
real-life dataset. We measured the performance of the approach across different
metrics by injecting various types of anomalies in the event logs. The evaluation
results demonstrate that our approach performs well in regard to events activ-
ity type and attribute anomalies. They also showed limitations regarding the
detection of structural and temporal process anomalies which requires further
exploration of GNN architectures that can better detect such anomalies.

2 Preliminaries and Background

Object-centric Process Mining. Traditional approaches to process mining
involve ‘flattened’ event logs that are based on the assumptions of a single case

1 Event logs and source code are available at: github.com/niro-a/DAEiOcBPvGNN

https://github.com/niro-a/DAEiOcBPvGNN

2. PRELIMINARIES AND BACKGROUND 3

notion and of each event to be associated to exactly one case [1]. This leads
to a gap between the real event data and the event log, and specifically to the
issues of deficiency (deletion of events), convergence (duplication of events) and
divergence (ordering unrelated events) [1]. An object-centric event log [18] is a
collection of events where each event is associated with one or more objects,
which may be of different types. Similarly to traditional event logs, each event
is also associated to an activity, timestamp, and additional attributes.

Definition 1 (Object-centric Event Log). Let T be the universe of times-
tamps. An object-centric event log L = (E,O,OT,A,AV, πtype, πtime, πtrace, πact,
πattr) is a tuple where:

– E is a set of events, O is a set of objects, OT is a set of object types, A is
a set of activities and AV is a set of attribute values,

– πtype: O → OT maps each object to an object type,
– πtime: E → T maps each event to a timestamp,
– πtrace: O → E∗ maps each object to a temporally ordered sequence of events,
– πact : E → A maps each event to its activity,
– πattr : E ↛ AV maps each event onto attributes values.

By modeling the relationship between events and multiple objects of different
types, object-centric event logs exhibit a graph structure [8] and also the tradi-
tional concepts of cases (i.e. process instances) and variants have been extended,
in the object-centric setting, from sequences to graphs [5].

Definition 2 (Object-centric Process Instance). Let L be an object-centric
event log. Given all the temporally ordered traces of events πtrace(oi) = ⟨e1, . . . , en⟩
associated to each object oi ∈ L, an object-centric process instance P = (E′, D)
is a directed graph with nodes E′ (representing events), edges D (representing the
events temporal dependencies) for a set of traces joined directly or transitively
by one or more common events.

Given this definition, an object-centric event log can be reconstructed as a
set of one or more process instances, where process instances are made by set of
traces that are connected by common bridge events. This representation is free of
convergence, deficiency, or divergence issues [3] and is equivalent to the connected
component process execution found in [5]. It represents a generalization of the
traditional case concept to object-centric event logs.

Problem Statement. While most of the traditional process mining literature
has focused on detecting anomalous process instances (i.e. cases), we move our
focus to detecting anomalous events since, in the context of object-centric process
mining, process instances can be overly complex and large, to the extreme of
comprising one single instance for the whole event log [5].

Unlike some of the previous machine learning approaches that characterized
anomaly detection as a semi-supervised task [21,24,26] which assumes the avail-
ability of a suitable labeled dataset of normal behavior, we characterize anomaly
detection as an unsupervised task. We further impose the requirement for the
algorithms to explicitly discriminate the anomalous events from the normal ones.

4 A. Niro and M. Werner

Definition 3 (Event Anomaly Detection). Event anomaly detection is the
task of identifying events that deviate significantly from normal behavior in a
given object-centric event log. Formally, given an object-centric event log L, let
En ⊆ E be the set of normal events and Ea ⊂ E be the set of anomalous events.
The goal of event anomaly detection is to learn a function f : E → {0, 1} that
assigns a binary label to each event ei ∈ E indicating whether it is anomalous
or not, based only on the knowledge of L.

3 Related Work

Anomaly Detection in Business Processes. The task of anomaly detection
involves identifying observations that do not follow a pattern of normal behav-
ior [14], or more specifically in the context of business processes and of process
mining, of normal process behavior [23]. The exact notion of normal behavior
and conversely of anomalous behavior are heavily dependent on the application
domain [14] and on the level of analysis of the specific detection approach [23].
A possible categorization of process anomalies is between event-level and pro-
cess instance-level anomalies [23], where the first refers to anomalies in one or
more attributes of a specific event, while the latter to anomalies in the order and
dependencies between events belonging to the same process instance. Following
the more general taxonomy found in [14], [13] classifies process anomalies into
three categories based on their nature: point anomalies, contextual anomalies,
and collective anomalies. Point (or global) anomalies refer to individual obser-
vations that are anomalous compared to the rest of the data, while contextual
(or local) anomalies are observations that are only anomalous in specific con-
texts. Collective anomalies are sets of related observations that are anomalous
compared to the entire dataset, even if the individual observations may not be
anomalies on their own.

In regard to existing approaches, [6] have proposed a generalization of the
traditional conformance checking concepts of precision and fitness to object-
centric process mining, but otherwise approaches to anomaly detection in object-
centric event logs are, to the best of our knowledge, currently unexplored. More
research has been done in the context of traditional process mining, which has
mostly taken a case-level (i.e. process instance level) perspective. [23].

Conformance checking based approaches revolve around detecting anomalous
behavior in an event log compared to a reference process model or a discovered
process model. These approaches can either focus on a control-flow perspective
[10,9] or consider also additional event attributes [12,7].

Distance-based approaches group traces based on distance measures, either
via clustering [21] or classification [30] algorithms, while reconstruction-based
approaches employ autoencoder neural networks to compute the reconstruction
errors for the case encodings, which are used as anomaly scores. Approaches ap-
plying standard autoencoders [27,26] involve representing each case as an ordered
vector of event activity types and events attributes, eventually padding shorter
cases to the maximum length found in the event log. Similarly, approaches based

4. METHOD 5

on recurrent neural networks leverage the sequential nature of the traditional
case concept to train autoencoders based on gated-recurrent units (GRUs) [28]
or long-short term memory (LSTM) neural networks [26,24]. [20] proposed an
approach based on graph autoencoders that represented cases as loops and self-
loops between activity types.

A common characteristic of the aforementioned approaches is that they re-
quire the definition of a threshold to discriminate between anomalous and normal
cases [23] derived from domain knowledge or some heuristic.

Graph Neural Networks. GNNs are a class of neural networks designed to op-
erate on graphs. They have been applied successfully to various tasks, including
anomaly detection [25]. In general terms, GNNs are based on learning represen-
tations of the nodes of graphs and of their neighborhood (a k-hop of connected
nodes) via a local function that is invariant to permutation of the neighboring
nodes ordering [31]. [11] categorizes most GNNs into three classes based on their
local function: convolutional, attentional, and generic message-passing. We are
not aware of GNNs applications to object-centric process mining, but, in the
context of traditional process mining, they have been employed in approaches
to process discovery [29], predictive process mining [15,19,32] and anomaly de-
tection [20]. These approaches have relied on encodings of process instances as
ordered sequences of connected nodes, with the exception of [15], who employed
a technique proposed in [16] to embed some temporal loops and events paral-
lelism in the process instances, and of [20] who, as mentioned, encoded process
instances as loops and self-loops between activity types (instead of events).

4 Method

Approach Overview. Our approach, as illustrated in Figure 1, relies on a
GCNAE [33] trained on object-centric event logs containing both normal and
anomalous events. We first reconstruct the object-centric process instances from
the event logs as a single (disconnected) graph that serves as input for the
GCNAE. The GCNAE is trained to reconstruct the nodes attributes of the input
graph. The nodes’ reconstruction errors serve as the anomaly scores. We finally
apply a simple heuristic based on the IQR to automatically assign a binary label

...

Z

Object-centric
Event Log

Input Graph
G=(A, X)

Labeled
Events

GCNAE Architecture
Data Preprocessing

Process Instances
Reconstruction

Input Graph
Encoding

Automatic
Thresholding

Anomaly
Labeling

Anomaly
Scores

IQR Heuristic

Fig. 1. An overview of our proposed approach.

6 A. Niro and M. Werner

to each event indicating whether it is anomalous or not, without the need to
manually set an anomaly score threshold. The following sub-sections explain the
different steps in detail.

4.1 Data Preprocessing

P1 P2

e1

e4

e7 e8

e2

e3 e5

e6

Fig. 2. The reconstructed process in-
stances for the object-centric event log
in Table 1.

Process Instances Reconstruction.
We reconstruct the object-centric process
instances via the ocpa Python library [4]
to represent the dependencies between
events in the object-centric event log.

As an example, given the simple
object-centric event log L in Table 1, the
resulting process instances P1 and P2 can
be visualized in Figure 2, where P1 is com-
posed by the set of traces πtrace(a1) ∪
πtrace(a3) ∪ πtrace(b3) = ⟨e1, e4, e7⟩ ∪
⟨e4, e7⟩ ∪ ⟨e4, e8⟩ which are bridged by
events e4 and e7 and where P2 is com-
posed by the set of traces πtrace(a2) ∪
πtrace(b1) ∪ πtrace(b2) = ⟨e2, e5, e6⟩ ∪
⟨e2, e3⟩ ∪ ⟨e2, e3, e6⟩ which are bridged by
events e2, e3 and e6.

Input Graph Encoding. We combine the process instances into a single graph
G, composed of a set of disconnected subgraphs (i.e., the process instances). This
way, we do not need to apply padding or other transformations to the instance
graphs. For the example in Figure 2, therefore the input graph would correspond
to the set of the two subgraphs P1 and P2, GL = {P1, P2}.

Definition 4 (Adjacency Matrix, A). Given the input graph G for the event
log L, where G = (V, E) is a directed graph with nodes V = EL and edges
E ⊆ V ×V, we represent it with an adjacency matrix A ∈ R|V|×|V| where, for an
ordered pair of nodes (u, v), au,v is equal to 1 if (u, v) ∈ E and 0 otherwise.

Table 1. An object-centric event log with two object types (A, B).

Event ID Timestamp Obj. Type A Obj. Type B Activity Attr1 Attr2 . . .

e1 01/04/23 09:01 a1 act1 0.12 0.75 . . .
e2 01/04/23 09:07 a2 b1, b2 act1 0.33 0.98 . . .
e3 01/04/23 09:14 b1, b2 act2 0.24 0.39 . . .
e4 01/04/23 09:22 a1, a3 b3 act3 0.15 0.67 . . .
e5 01/04/23 09:37 a2 act3 0.89 0.21 . . .
e6 01/04/23 09:44 a2 b2 act4 0.58 0.46 . . .
e7 01/04/23 10:02 a1, a3 act5 0.73 0.81 . . .
e8 01/04/23 10:09 b3 act4 0.42 0.34 . . .

4. METHOD 7

Definition 5 (Feature Matrix, X). Given an object-centric event log L and
its input graph G = (V, E), we map to each node u ∈ V a feature vector, xu ∈ Rk

corresponding to the event activity type πact(u) and original attributes πattr(u),
where categorical features are one-hot encoded, and thus k is equal to the sum
of unique activity types in AL, unique categorical values in AVL and numerical
attributes in AVL. Then, we stack all the feature vectors into a feature matrix

X ∈ R|V|×k, where X =
[
x1,x2, . . . ,x|V|

]⊤
.

Accordingly, the input graph G for the GCNAE is encoded as G = (A,X). For
the running example of the object-centric event log L in Table 1, the adjacency
matrix AL and the feature matrix XL would look as:

AL =

0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

XL =

1 0 0 0 0 0.12 0.75 · · ·
1 0 0 0 0 0.33 0.98 · · ·
0 1 0 0 0 0.24 0.39 · · ·
0 0 1 0 0 0.15 0.67 · · ·
0 0 1 0 0 0.89 0.21 · · ·
0 0 0 1 0 0.58 0.46 · · ·
0 0 0 0 1 0.73 0.81 · · ·
0 0 0 1 0 0.42 0.34 · · ·

4.2 GCNAE Architecture

The GCNAE uses a graph convolutional network (GCN) [22] component both
for the the encoder and for the decoder. Graph convolution aggregates the in-
formation from neighboring nodes and updates node representations based on
their local graph structure.

The encoder component of the GCNAE learns a latent representation of the
input graph while the decoder learns to reconstruct the nodes features from this
latent representation. The GCNAE is trained by minimizing the reconstruction
error between the original nodes features and the reconstructed ones.

Adapted from [33], our encoder consists of a two-layer GCN:

Z = GCN(X,A) = ReLU(ÃReLU(ÃXW(0))W(1)) (1)

where the output Z is a matrix of node embeddings, X is the feature matrix,
A is the adjacency matrix of the graph. ReLU is the rectified linear unit acti-
vation function with ReLU(x) = max(0,x). Ã is the symmetrically normalized

adjacency matrix with Ã = D− 1
2 (A+ I)D

− 1
2 (where I is the identity matrix and

D is the diagonal degree matrix), used to add self-loops and normalize nodes
features aggregation. W(l) denotes a learnable weight matrix for each l-th layer.

The decoder’s reconstructed node attributes X̂ are computed with a third
GCN layer that maps the node embeddings back to the original input space:

X̂ = ReLU(ÃZW(2)) (2)

8 A. Niro and M. Werner

As the loss function to optimize the GCNAE we take the average row-wise
mean squared error (MSE) between X and X̂, while, to account for different
shapes in the features encoding, we compute the events anomaly scores by taking
the average MSE for each event original feature which are then averaged again.

4.3 IQR Heuristic: Automatic Thresholding and Anomaly Labeling

The IQR is is often used to detect outliers and is defined as the difference between
the first quartile (Q1) and the third quartile (Q3) of a dataset, IQR = Q3−Q1.

To determine a threshold to label anomalies, we compute the Q3 and the
IQR for anomaly scores generated by the GCNAE and set the threshold τ as:

τ = Q3 + k · IQR (3)

Once the threshold is set, we can automatically label the events in the event
log as normal or anomalous based on whether their anomaly score is respectively
below or above the threshold. In this study, we set k = 1.5 based on convention,
but it could be adjusted to tailor the sensitivity of the threshold to specific uses.

5 Experiments

We evaluate our proposed approach on both synthetic and real object-centric
event logs, since real event logs can help prove the feasibility of the approach but
at the same can also contain unlabeled real-life anomalies which can impact the
reliability of the results [26,28]. Like in previous work [26,28,27,24], we introduce
artificial anomalies into the event logs to simulate various types of irregularities
that can occur in real-world processes. Summary statistics for the datasets and
the reconstructed process instances can be found in Table 2.

5.1 Datasets

We use the BPIC 2017 dataset [17] as a representative of a real event log.
This event log is commonly employed in research on process discovery and on
predictive process mining. It contains over 500.000 events for the loan application
process of a Dutch financial institution between 2016 and 2017. The event log
has two types of objects (the application and the offer) and thirteen attributes.

The second event log is the synthetic DS2 dataset found in [5]. It simulates an
order management process with an especially high amount of connected objects
and variability. The event log has three types of objects (items, orders, and
packages) and four attributes.

Table 2. Description of the datasets used in the experiments.

Dataset
Original
Events

Final
Events

Injected
Anomalies

Process
Instances

BPIC 2017 393.931 407.499 40.704 31.509

DS2 22.367 23.137 2.310 83

5. EXPERIMENTS 9

5.2 Anomalies Injection

Before reconstructing the process instances, we directly manipulate the object-
centric event logs by introducing three types of anomalies in equal parts, amount-
ing in total to circa 10% of the final number of events in each event log.

Attributes Swap: these anomalies are created by altering the attributes of an
event, introducing inconsistencies when compared to events in the same process
instance. Given the candidate event i, we select the event j whose attributes
deviate the most from the attributes of event i by maximizing the euclidean
distance ||xi − xj || and replace the original attributes of i with those of j.

Timestamp Shift : these anomalies are introduced by sampling an existing
event in the event log and shifting its timestamp within the time-frame (±5%)
of all other events that share a common object with the candidate event. This
leads to discrepancies in the temporal order of the events in the process instance.

Random Activities: similarly to [28], we inject events into the process in-
stances with an activity type that does not come from the original process,
while the attributes are sampled from the target process instance.

5.3 Baselines

We compare the performance of our graph-based approach to existing approaches
for traditional event logs. To be able to do so, we ‘flatten’ the object-centric
process instances to temporally ordered sequences composed by the set of events
belonging to each process instance. While this flattening strategy still leads to
divergence issues, it does not lead to the deletion or duplication of events.

As baselines, we implement a standard autoencoder (AE) similar to the one
in [27,26] and a LSTM autoencoder (LSTMAE) similar to the recurrent neural
network approaches found in [28,26,24]. For both, we used the hyperparameters
found in previous implementations [28,26] in the literature.

5.4 Results

Table 3 shows the experiments results. We ran our experiments five times with
different random seeds. To compute the F1 Scores, we applied the IQR heuristic
to all models.

Table 3. Performance comparison of the different models. Results reported as mean
± standard deviation. Best model in bold.

Dataset Model F1 Score AUC ROC AUC PR Recall @ 10

BPIC 2017 AE 52.5 ± 0.1 85.6 ± 0.1 43.5 ± 0.1 52.1 ± 0.1
LSTMAE 44.7 ± 0.2 82.9 ± 0.1 34.4 ± 0.2 43.9 ± 3.3
GCNAE 61.0 ± 0.2 82.4 ± 0.0 60.3 ± 0.2 64.7 ± 0.1

DS2 AE OOM OOM OOM OOM
LSTMAE 31.2 ± 0.6 68.4 ± 0.4 23.5 ± 0.9 30.6 ± 0.7
GCNAE 59.2 ± 0.4 82.5 ± 0.4 65.0 ± 0.4 66.6 ± 0.1

10 A. Niro and M. Werner

The GCNAE generally outperforms the baselines, which could be attributed
to the inherent ability of GNNs to reason over graphs and account for dependen-
cies between events. We also note how the AE goes out-of-memory on the DS2
dataset since the high number of events in the process instances of this dataset
result in long vector encodings.

Furthermore, in Table 4 we present the hit rate (i.e., proportion of events
assigned to the correct class out of the class totals) for each class and model.
Each anomaly type has a frequency of circa 3.33% and normal events of circa
90%, which can be seen as the hit rates for a random classifier.

Table 4. Hit Rate for the different classes, where classes are assigned via the IQR
heuristic for all models. Results reported as mean ± standard deviation. Best model
in bold.

Dataset Model Normal Attr. Swap Timestamp Random Act.

BPIC 2017 AE 93.41 ± 0.07 93.73 ± 0.35 28.22 ± 0.45 48.18 ± 0.53
LSTMAE 92.56 ± 0.02 87.37 ± 0.39 21.35 ± 0.35 35.50 ± 0.70
GCNAE 97.47 ± 0.06 95.75 ± 0.40 2.57 ± 0.05 63.13 ± 1.27

DS2 AE OOM OOM OOM OOM
LSTMAE 90.24 ± 0.16 83.79 ± 2.81 9.82 ± 0.47 10.47 ± 1.40
GCNAE 93.22 ± 0.13 96.73 ± 0.21 6.55 ± 0.63 100.00 ± 0.00

The GCNAE struggles detecting the Timestamp Shift anomalies. A possible
explanation is that GCNs learn nodes representations by aggregating local neigh-
borhood information. Shifting an event within a process instance time-frame
might create very subtle changes in the event neighborhood, which therefore
would limit the performance of the GCNAE for this specific anomaly.

6 Conclusion

Detecting anomalies is important for identifying inefficiencies, errors, or fraud
in business processes. Object-centric event logs provide benefits over traditional
event log representations. We have presented a novel approach for anomaly de-
tection in business processes that can leverage the joint capabilities of GNNs
and object-centric process mining. Our approach has displayed promising per-
formance, while also not requiring a process model, manual labeling the data,
or the availability of a clean training set.

Future work could explore the use of GNNs architectures that are better
suited to learn the temporal and structural dependencies of business process in-
stances and address the limitations displayed by the GCNAE. Future work could
also investigate the combined performance of our approach and of object-centric
conformance checking approaches since they could complement each other, the
first tackling attribute anomalies and the second control-flow anomalies.

6. CONCLUSION 11

References

1. van der Aalst, W.M.P.: Object-Centric Process Mining: Dealing with Divergence
and Convergence in Event Data. In: Ölveczky, P.C., Salaün, G. (eds.) Software
Engineering and Formal Methods. pp. 3–25. Lecture Notes in Computer Science,
Springer International Publishing, Cham (2019)

2. van der Aalst, W.M.P.: Process mining: A 360 degree overview. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process mining handbook, pp. 3–34. Springer Inter-
national Publishing, Cham (2022)

3. Adams, J.N.: Addressing Convergence, Divergence, and Deficiency Issues
4. Adams, J.N., Park, G., van der Aalst, W.M.: ocpa: A Python library for object-

centric process analysis. Software Impacts p. 100438 (2022)
5. Adams, J.N., Schuster, D., Schmitz, S., Schuh, G., van der Aalst, W.M.: Defin-

ing Cases and Variants for Object-Centric Event Data. In: 2022 4th International
Conference on Process Mining (ICPM). pp. 128–135 (2022)

6. Adams, J.N., Van Der Aalst, W.M.: Precision and Fitness in Object-Centric Pro-
cess Mining. In: 2021 3rd International Conference on Process Mining (ICPM). pp.
128–135. IEEE, Eindhoven, Netherlands (2021)

7. Bergami, G., Maggi, F.M., Marrella, A., Montali, M.: Aligning Data-Aware Declar-
ative Process Models and Event Logs. In: Business Process Management: 19th
International Conference, BPM 2021, Rome, Italy, September 06–10, 2021, Pro-
ceedings. pp. 235–251. Springer-Verlag, Berlin, Heidelberg (2021)

8. Berti, A., Herforth, J., Qafari, M., Aalst, W.M.v.d.: Graph-Based Feature Extrac-
tion on Object-Centric Event Logs. preprint, In Review (2022)

9. Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of
process aware information systems. Information Systems 38(1), 33–44 (2013)

10. Bezerra, F., Wainer, J., van der Aalst, W.M.P.: Anomaly Detection Using Process
Mining. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P.,
Ukor, R. (eds.) Enterprise, Business-Process and Information Systems Modeling.
pp. 149–161. Lecture Notes in Business Information Processing, Springer, Berlin,
Heidelberg (2009)

11. Bronstein, M.M., Bruna, J., Cohen, T., Veličković, P.: Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges (2021), arXiv:2104.13478 [cs, stat]

12. Böhmer, K., Rinderle-Ma, S.: Multi-perspective Anomaly Detection in Business
Process Execution Events pp. 80–98 (2016), mAG ID: 2538859255

13. Böhmer, K., Rinderle-Ma, S.: Anomaly Detection in Business Process Runtime
Behavior – Challenges and Limitations (2017), arXiv:1705.06659 [cs]

14. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
puting Surveys 41(3), 1–58 (2009)

15. Chiorrini, A., Diamantini, C., Mircoli, A., Potena, D.: Exploiting Instance Graphs
and Graph Neural Networks for Next Activity Prediction. In: Munoz-Gama, J.,
Lu, X. (eds.) Process Mining Workshops. pp. 115–126. Lecture Notes in Business
Information Processing, Springer International Publishing, Cham (2022)

16. Diamantini, C., Genga, L., Potena, D., van der Aalst, W.: Building instance graphs
for highly variable processes. Expert Systems with Applications 59, 101–118 (2016)

17. van Dongen, B.F.: BPI Challenge 2017 (2017), publisher: 4TU.ResearchData
18. Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL: A Standard

for Object-Centric Event Logs. In: Bellatreche, L., Dumas, M., Karras, P., Mat-
ulevičius, R., Awad, A., Weidlich, M., Ivanović, M., Hartig, O. (eds.) New Trends
in Database and Information Systems. pp. 169–175. Communications in Computer
and Information Science, Springer International Publishing, Cham (2021)

12 A. Niro and M. Werner

19. Harl, M., Weinzierl, S., Stierle, M., Matzner, M.: Explainable predictive business
process monitoring using gated graph neural networks. Journal of Decision Systems
29(sup1), 312–327 (2020)

20. Huo, S., Völzer, H., Reddy, P., Agarwal, P., Isahagian, V., Muthusamy, V.: Graph
Autoencoders for Business Process Anomaly Detection. In: Polyvyanyy, A., Wynn,
M.T., Van Looy, A., Reichert, M. (eds.) Business Process Management. pp. 417–
433. Lecture Notes in Computer Science, Springer International Publishing, Cham
(2021)

21. Junior, S.B., Ceravolo, P., Damiani, E., Omori, N.J., Tavares, G.M.: Anomaly
Detection on Event Logs with a Scarcity of Labels. In: 2020 2nd International
Conference on Process Mining (ICPM). pp. 161–168 (2020)

22. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional
Networks (2017), arXiv:1609.02907 [cs, stat]

23. Ko, J., Comuzzi, M.: A Systematic Review of Anomaly Detection for Business
Process Event Logs. Business & Information Systems Engineering (2023)

24. Lahann, J., Pfeiffer, P., Fettke, P.: LSTM-Based Anomaly Detection of Process
Instances: Benchmark and Tweaks. In: Process Mining Workshops, vol. 468, pp.
229–241. Springer Nature Switzerland, Cham (2023), series Title: Lecture Notes in
Business Information Processing

25. Liu, K., Dou, Y., Zhao, Y., Ding, X., Hu, X., Zhang, R., Ding, K., Chen, C., Peng,
H., Shu, K., Sun, L., Li, J., Chen, G.H., Jia, Z., Yu, P.S.: BOND: Benchmark-
ing Unsupervised Outlier Node Detection on Static Attributed Graphs (2022),
arXiv:2206.10071 [cs]

26. Nguyen, H.T.C., Lee, S., Kim, J., Ko, J., Comuzzi, M.: Autoencoders for improving
quality of process event logs. Expert Systems with Applications 131, 132–147
(2019)

27. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Analyzing business process
anomalies using autoencoders. Machine Learning 107(11), 1875–1893 (2018)

28. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: BINet: Multi-perspective
business process anomaly classification. Information Systems 103, 101458 (2022)

29. Sommers, D., Menkovski, V., Fahland, D.: Process Discovery Using Graph Neural
Networks. In: 2021 3rd International Conference on Process Mining (ICPM). pp.
40–47 (2021)

30. Tavares, G.M., Barbon, S.: Analysis of Language Inspired Trace Representation for
Anomaly Detection. In: ADBIS, TPDL and EDA 2020 Common Workshops and
Doctoral Consortium. pp. 296–308. Communications in Computer and Information
Science, Springer International Publishing, Cham (2020)

31. Veličković, P.: Everything is Connected: Graph Neural Networks (2023),
arXiv:2301.08210 [cs, stat]

32. Weinzierl, S.: Exploring Gated Graph Sequence Neural Networks for Predicting
Next Process Activities. In: Business Process Management Workshops. pp. 30–42.
Lecture Notes in Business Information Processing, Springer International Publish-
ing, Cham (2022)

33. Yuan, X., Zhou, N., Yu, S., Huang, H., Chen, Z., Xia, F.: Higher-order Structure
Based Anomaly Detection on Attributed Networks. In: 2021 IEEE International
Conference on Big Data (Big Data). pp. 2691–2700 (2021)

	Detecting Anomalous Events in Object-centric Business Processes via Graph Neural Networks

