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Abstract. Predictive process monitoring (PPM) aims at creating mod-
els that predict aspects of interest of process execution using historical
data available in event logs, mostly using machine learning (ML) tech-
niques. When developing a PPM model, one has several design choices,
encompassing both ML-related concerns, such as which classification or
regression model to choose, and PPM-specific concerns, such as how to
encode the trace prefixes or whether to drop infrequent activities when
training a model. While the literature has seen a few attempts to study
how these choices impact the performance of a PPM model, no system-
atic studies on this matter exist. This paper moves towards closing this
gap. We propose a framework to interpret the impact of design choices
on the performance of a PPM model. The proposed framework uses as
building blocks a search space exploration algorithm, which is able to
generate different model configurations, and explainable AI techniques,
e.g., SHAP, to analyze the impact of design choices on the model perfor-
mance based on the generated configurations. We show an instantiation
of the framework in the use case of outcome-oriented PPM, discussing
also the experimental results obtained using publicly available event logs.
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1 Introduction

Predictive process monitoring (PPM) aims at creating predictive models of busi-
ness process execution using the historic data available in event logs, often ex-
ploiting machine learning (ML) techniques [8]. PPM historically has considered
three aspects to be predicted: the activities that will be executed next in a run-
ning case, the timestamps of such activities (including the remaining case du-
ration), and the outcome of running cases, as usually captured by a categorical
label.

The development of PPM models requires setting a value for various hyper-
parameters [5, 1]. These include both typical ML hyperparameters of the clas-
sification or regression techniques chosen to develop a model, as well as others
⋆ Sponsored by the NRF Korea, Grant Number 2022R1F1A1072843.
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that are specific to the PPM task at hand. For instance, one needs to choose how
to encode the trace event data to obtain a feature vector and whether to divide
the trace prefixes into buckets when training a model, determining if needed the
number and types of buckets.

Getting insights into the impact of these design choices on the performance of
a PPM model can be crucial for model developers. While a few papers have tried
to create benchmarks for different PPM tasks (e.g. [13, 16, 11]) and few works
have focused on searching for the best hyperparameters for a PPM task [5, 1],
there is no empirical work in the literature specifically aiming at understanding
the impact of the hyperparameter values on the performance of a PPM technique.
Moreover, since some of these hyperparameters are PPM-specific, we cannot
simply adapt insights obtained for other ML scenarios. In this context, this
work focuses on the outcome-oriented PPM task, aiming to answer the following
research question: “How does the value of PPM-specific hyperparameters impact
the performance of outcome-oriented PPM models?”

Answering this question can be crucial for model developers. By knowing in
advance which parameter values are more likely to yield a well-performing model,
they may save huge amounts of time and computational resources when devel-
oping a PPM model. Knowledge about the optimal hyperparameter values can
also inform the development of AutoML solutions for PPM, reducing the effort
of exploring the space determined by the hyperparameter value combinations.

From a methodological standpoint, this question could be tackled by creating
an empirical benchmark testing several configurations of hyperparameter values
on different event log datasets. As mentioned earlier, this has been tried in [13,
16, 11], even though not systematically, and it requires a massive effort in terms
of computational cost and analysis. In this work, we take a novel and more
lightweight approach, exploiting the capabilities of explainable AI techniques.

More in detail, we propose a general framework for interpreting the impact of
design choices on the PPM model performance that includes three phases. In the
first phase, a search space exploration algorithm is used to generate an extensive
number of hyperparameter value configurations to configure an outcome-oriented
PPM model. In the second phase, these configurations are used as feature vectors
associated with a numerical value of the performance of the corresponding PPM
model, e.g., model accuracy or AUC, to fit a regression model. Finally, in the
third phase, XAI techniques are used to “interpret” the contribution made by
each feature, i.e., hyperparameter value, on the model performance, i.e., the
predicted numerical label.

We discuss an instantiation of the proposed framework based on the genetic
algorithm-based search space exploration techniques proposed in [5], as well as
SHAP and Explainable Boosting Machines as XAI techniques, discussing the
results obtained on publicly available event logs.

The paper is organised as follows. After a discussion of the related work in
Section 2, Section 3 introduces the general framework. The specific instantiation
of the framework that we implemented is discussed in Section 4, while the exper-
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imental results are reported and discussed in Section 5. Conclusions are finally
drawn in Section 6.

2 Related Work

We can roughly classify the literature related to this paper into two groups: (i)
the works related to outcome-oriented Predictive Process Monitoring; (ii) the
state-of-the-art concerning AutoML.

Outcome-oriented Predictive Process Monitoring focuses on predicting the
outcome (e.g., the satisfaction of a business objective) of a process [13]. In [8,
2] the sequence of activities already carried out and the data payload of the
last activity are leveraged to make predictions on the fulfilment (or the viola-
tion) of a boolean predicate in a running case. In [6], traces are considered as
complex symbolic sequences, i.e., sequences of activities each carrying its data
payload, and different approaches for feature encoding are considered. In [15],
the approach in [6] has been extended by clustering the historical traces be-
fore classification. In [13], a comparison of the existing outcome-based predictive
monitoring approaches is presented.

AutoML automates the process of developing the best model, e.g., the most
accurate one, to address a given machine learning task, or speeding up the model
development phase. Different AutoML frameworks, such as Auto-sklearn, Tree-
Based Pipeline Optimization Tool (TPOT), or H2O, provide different automated
solutions for each different step of the typical machine learning pipeline [17, 4],
such as data preparation or hyperparameter optimisation. Several approaches
in machine learning have been proposed for the selection of a learning algo-
rithm [10], for the tuning of hyperparameters [3], and for the combined opti-
mization of both the algorithm and the hyperparameters [14]. AutoML has been
generally neglected by the PPM literature, with the exception of [5, 1]. In [1], an
approach based on a genetic algorithm has been proposed for the identification
of the best configuration, in terms of predictive models, encodings and bucket-
ing methods, for PPM tasks. In [5], besides encoding and bucketing methods,
additional parameters, such as the dropping of infrequent activities, as well as a
broader set of models have been used.

3 A Framework for analyzing design choices

Figure 1 depicts the proposed framework for the analysis of the design choices
in outcome-based PPM. We assume that the design choices are captured by the
values of PPM model hyperparameters. As mentioned in the Introduction, these
may range from the classification and trace encoding technique adopted, up to
the number of buckets in which trace prefixes are divided. The search space
is constituted by the combination of all the values of such hyperparameters. A
configuration is a point in the search space, in which one value is assigned to each
hyperparameter. For example, a configuration may be determined by choosing to
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Fig. 1. Framework overview

use a decision tree, encoding traces using index-based encoding, and considering
only one bucket containing all the encoded trace prefixes when training/testing.

The input of the framework is an event log and, if necessary, an initial hy-
perparameter configuration. In the first step of the framework, a search-space
exploration algorithm is used to generate a set of hyperparameter configurations
and to compute the corresponding PPM performance values, that is, the PPM
performance values obtained by using that configuration. To this aim, we start
from an event log and an initial set of hyperparameter configurations and we
explore the search space of the PPM model hyperparameter configuration values
by generating new configurations. For each configuration, the performance of the
PPM model obtained by leveraging it on the event log is computed. Note that
different types of algorithms may be chosen, e.g., grid search, optimization-based,
or evolutionary-based.

Once the hyperparameter configurations and the performance metrics of the
corresponding outcome-oriented PPM model have been generated, in the second
step of the framework, they are transformed into numeric feature vectors and
used to train a regression model that aims at predicting, given a configuration of
hyperparameter values, the performance of the corresponding PPM model, that
is, the model built using that particular configuration.

Finally, in the third and last step, a post-hoc explainer for XAI is applied on
top of the regression model in order to understand the impact of each feature
(i.e., hyperparameter configuration value) on the performance of the model to
give users explainability in setting hyperparameter configuration of PPM.

4 Instantiating the framework in outcome-oriented PPM

We instantiate the framework described in Section 3 by leveraging for the explo-
ration of the search space an existing GA-based exploration approach (described
in [5]). The algorithm aims at optimizing the performance of the outcome-
oriented PPM models built leveraging the hyperparameter value configurations.
More specifically, for each event log, each individual of the population of the
genetic algorithm corresponds to a hyperparameter value configuration as well
as to the outcome-oriented PPM model obtained by using that specific configu-
ration. The fitness function, which is defined as:

f(i) = [sc(i) + re(i)]/2 (1)
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aims at optimizing the performance of such a PPM model by maximizing a
performance score sc(i), computed as the average AUC and accuracy of the
PPM model i, and minimizing the error rate. The latter is captured by the term
re(i), which is defined as 1− failurerate(i), where the failure rate is defined as
the percentage of cases in which the outcome predicted by the model i has a
class probability lower than 0.7.

The GA-based exploration approach introduced in [5] considers the following
design space:

Model: Even though any classification model can be used, the literature
highlights that tree-based classifiers show better performance in outcome-based
PPM [13]. We consider four tree-based models, including both individual and
ensemble classifiers: Decision Tree (DT), Random Forest (RF), XGBoost (XGB),
and LightGBM (LGBM).

Drop_act: this configuration parameter captures the process of removing
low-frequency activities from an event log, which may reduce the computational
cost and improve the model performance [12]. We consider a discrete gap-based
scale for this parameter, i.e., dropping the 2, 4, 6, or 8 less frequent activities in
an event log.

Bucketing: When pre-processing an event log for outcome-based prediction,
the prefixes of each trace are extracted to construct a prefix log. The prefixes then
can be grouped into so-called buckets. A different classification model is trained
for each bucket. In this paper, we consider prefix-length bucketing, in which
prefixes are grouped by length, i.e., number of events. A base strategy (zero-
bucketing) groups all prefixes in a single bucket, thus training a single classifier.
Bucketing allows the grouping of homogeneous prefixes, which may improve the
accuracy of the trained models. Given an input event log, this parameter assumes
values comprised between 1 (corresponding to zero-bucketing) up to two times
the mean length of the traces in an event log. The value n of this parameter
signifies that n buckets are created. If for instance, n = 3 and the maximum
length of trace in a log is six events, then three buckets are created containing
the prefixes of length 1 and 2, 3 and 4, 5 and 6, respectively.

Encoding: The prefixes must be numerically encoded to be fed into the model.
The problem of encoding prefixes is one of complex symbolic sequence encod-
ing [6] and can be approached in multiple ways. In this paper, we consider the
aggregation and index-based encodings. Aggregation is a lossy encoding, which
represents entire event sequence attributes into a single entity, for example, based
on frequency. Index-based is a lossless encoding that maintains the order of events
in a prefix. In index-based encoding, each event in a prefix is encoded into a fixed
number of numerical features.

Table 1 shows an example of a possible set of generated hyperparameter value
configurations and the corresponding PPM model performance values.

As a regression model, we consider the Explainable Boosting Machine (EBM),
a tree-based cyclic gradient boosting generalized additive model with automatic
interaction detection [7]. Despite the simplicity of the prediction task for the
regression model in this research, we selected EBM over the simple linear regres-
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Model Drop_act Bucketing Encoding Fitness function
DT 2 1 index-based 0.93
XGB 3 3 aggregation 0.97
DT 4 6 aggregation 0.85
...

Table 1. Example of hyperparameter values configurations and corresponding fitness
function values

sion model because of its intelligibility, accuracy, and ability to detect pairwise
interaction among features. A pairwise interaction refers to how two features in
a statistical or machine learning model interact with each other to determine
the outcome of the model.

Thus, EBM is interpretable and it offers global explanations of the model
in terms of both feature contribution and interaction effects. Yet, we also con-
sider the Shapley Additive exPlanations (SHAP) to answer our research question
precisely. While EBM provides global explanations with both feature contribu-
tion and interaction terms, SHAP is considered to offer more precise feature
contribution values by considering marginal contributions. To summarize, the
instantiated framework for outcome-oriented PPM provides explanations in the
form of feature contribution and feature interaction analysis of the regression
model: SHAP is used to calculate the feature contribution, whereas the EBM
model is used to analyze the interaction among features towards determining
the output of the model.

5 Experimental Results and Discussion

In this section, we first introduce the event log datasets that we considered in
the experiment in Section 5.1. Then, we aim to answer our research question:
“How does the value of PPM-specific hyperparameters impact the performance of
outcome-oriented PPM models?”. This is done in two steps with XAI techniques.
First, we present the results of the design feature contribution analysis using
SHAP in Section 5.2; then we analyze the results obtained for the design feature
contribution interaction analysis using EBM in Section 5.3.

5.1 Datasets

We consider four event logs made available by the Business Process Intelligence
Challenge (BPIC) that are commonly used in the literature. We followed the
same outcome labelling strategy of [13] for a total of 15 datasets. Table 2 shows
the characteristics of each dataset.

The BPIC2011 log refers to a diagnosis and treatment process in the gy-
naecology department of a Dutch academic hospital. Since the treatments do
not follow a strict process, it shows relatively high trace length compared to
other datasets. The BPIC2012 log refers to a personal loan application process
in a Dutch financial institute. There are three outcome labels defined for this
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Datasets # Traces Min
length

Med
length

Max
length

# Events # Activities # Variants Class
ratio

BPIC2011_1 1058 1 24 1814 57850 193 734 0.77
BPIC2011_2 1058 1 50 1814 138542 251 900 0.36
BPIC2011_3 1045 1 21 1368 69078 190 783 0.91
BPIC2011_4 1058 1 42 1432 84873 231 900 0.76
BPIC2012_1 4685 15 35 175 186693 36 3790 0.46
BPIC2012_2 4685 15 35 175 186693 36 3790 0.70
BPIC2012_3 4685 15 35 175 186693 36 3790 0.84
BPIC2015_1 696 2 42 101 28775 380 677 0.72
BPIC2015_2 753 1 55 132 41202 396 752 0.77
BPIC2015_3 1328 3 42 124 57488 380 1285 0.76
BPIC2015_4 577 1 42 82 24234 319 576 0.82
BPIC2015_5 1051 5 50 134 54562 376 1049 0.64
BPIC2017_20 4982 10 22 148 139232 25 1460 0.71
BPIC2017_30 7473 10 26 148 240537 25 3104 0.63
BPIC2017_40 9964 10 29 148 341953 25 4625 0.60

Table 2. Descriptive statistics of the datasets used in the experiments

log, i.e., whether an application is approved, cancelled, or rejected which yields
three datasets in Table 2 (BPIC2012_1, BPIC2012_2, and BPIC2012_3, re-
spectively). The BPIC2015 log refers to a building permit application process in
5 different Dutch municipalities. The process at each municipality is captured by
a different log, hence 5 datasets are considered (BPIC2015_1 to BPIC2015_5).
Due to its long recording period (about four years for each municipality), the pro-
cess has changed over the years, resulting in a significant increase in the number
of traces relative to the number of variants compared to other datasets. Finally,
the BPIC2017 log is an updated version of the BPIC2012 referring to a more
recent period in which a new information system has been used at the Dutch
financial institute. It follows the same labelling strategy of BPIC2012. However,
since it is a very large event log, we created three versions of it considering only
the “accepted” label and sampling 20%, 30%, and 40% of the original datasets, re-
spectively, by removing traces belonging to infrequent variants. The datasets and
the code to reproduce the experiments discussed next are available at https://
github.com/brucks1217/Understanding-the-impact-of-design-choices.

5.2 Analyzing the design choices using SHAP

Initially, we present the results of the mean absolute SHAP values to analyze
the contribution of each configuration feature (that is, design choice) on the
performance of the model. Note that the SHAP mean absolute value does not
give any insights into the direction of the impact of the feature on the model
performance, i.e., whether positive or negative.

Fig. 2 shows the results obtained. An initial insight that can be drawn is that
the feature bucketing is the most impactful design choice across all datasets.
By looking at the differences among the different event logs, it seems that this
feature is less impacting for event logs with a high number of activities, such as
the BPIC2012 and BPIC 2017 event logs. Apart from bucketing, the choice of
the model (in particular choosing RF) and of the index-based encoding seems to
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Fig. 2. Mean Absolute SHAP value of design choices

have an impact on the performance, while the impact of drop-act looks limited.
Another interesting remark is that the SHAP values of model (especially LGBM
and RF) for BPIC2012 are relatively higher in respect of the one of bucketing
when compared to other datasets. This implies that, for BPIC2012, the choice of
the model has a more significant impact on the classification performance com-
pared to other event logs. This is not the case, for instance, for the BPIC2011_1
and BPIC2017 datasets. For these logs, the SHAP value of all other features,
except for bucketing, appears particularly low.

Fig. 3. SHAP values for design dimension bucketing

In contrast to the mean absolute SHAP value, which does not discriminate
between positive and negative feature contributions to the model output, the
SHAP value for each feature reveals how that feature impacts the model pre-
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BPIC2011_1 BPIC2011_2 BPIC2011_3 BPIC2011_4 BPIC2012_1

Decision Tree -0.00669 -0.00969 -0.00879 -0.00664 -0.06741

Random Forest 0.00431 -0.00036 0.003 0.00261 0.02539
LightGBM 0.0001 0.0046 -0.00055 0.00359 0.01108

Xgboost 0.00265 0.00144 0.0028 -0.00307 0.01603

BPIC2012_2 BPIC2012_3 BPIC2015_1 BPIC2015_2 BPIC2015_3

Decision Tree -0.04098 -0.06018 -0.01325 -0.02103 -0.02345

Random Forest 0.01206 0.01463 0.00259 0.00308 0.00514
LightGBM 0.00033 0.01789 0.00524 0.0086 0.00312

Xgboost 0.0064 0.022228 0.00535 0.00802 0.0014

BPIC2015_4 BPIC2015_5 BPIC2017_20 BPIC2017_30 BPIC2017_40

Decision Tree -0.06446 -0.01537 -0.01542 -0.0169 -0.01391

Random Forest 0.03258 0.00446 -0.00507 -0.00201 -0.00224

LightGBM -0.00768 0.00294 0.00837 0.00235 0.00288

Xgboost 0.0138 0.0053 0.01198 0.0171 0.01209

Table 3. SHAP values for the classification model design choice.

diction according to its variations. We discuss here the results obtained for the
bucketing design feature (see Fig. 3), which appears to be the most impactful
according to Fig. 2, the type of classification model chosen (see Table 3), and
the encoding method (see Table 4). We leave instead out the drop_act feature,
which does not seem to have an impact on the performance of the model.

In Fig. 3, we observe that the impact of the design feature bucketing is
relatively small and positive for low values (below 20) and, at least for some
event logs, e.g., the BPIC2011, stronger and negative for higher values. This
could be due to the combined effect of the curse of dimensionality and sample
size. As the number of buckets considered increases, in fact, while the size of
the feature vector remains unchanged, the higher-sized buckets tend to contain
a lower number of training observations, from which it becomes harder to learn
a high-performing model. To sum up, based on the results shown in Fig. 3,
we suggest that choosing a lower number of buckets is generally a good design
choice.

From Table 3, we can observe that the decision tree model shows the lowest
SHAP value, even negatively contributing to the model performance. The re-
sult confirms the trend already observed in existing outcome-oriented predictive
process monitoring studies [6]: models based on ensemble principles outperform
decision trees. The other models, differently from decision trees, are instead based
on ensemble principles and, therefore, are generally more robust against higher
dimension input datasets [9]. In the case of bagging (RF), multiple decision trees
are built on random subsets of features and data. This randomness helps reduc-
ing the dominance of any single feature, thereby reducing the impact of irrelevant
or noisy dimensions. On the other hand, the boosting algorithms (LightGBM,
XGB) assign higher importance to the most informative features, thus effectively
reducing the dimension of the problem. To sum up, our analysis suggests that
an ensemble classifier should always be preferred in outcome-oriented PPM.
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BPIC2011_1 BPIC2011_2 BPIC2011_3 BPIC2011_4 BPIC2012_1

Index 0.00039 0.00508 -0.00212 0.00406 0.03083
Aggregate -0.0008 -0.00673 0.00249 -0.00496 -0.03924

BPIC2012_2 BPIC2012_3 BPIC2015_1 BPIC2015_2 BPIC2015_3

Index 0.02038 0.02012 0.00568 0.00579 0.00646
Aggregate -0.01476 -0.02269 -0.00592 -0.00652 -0.00596

BPIC2015_4 BPIC2015_5 BPIC2017_20 BPIC2017_30 BPIC2017_40

Index 0.01876 0.0056 0.00185 0.00117 0.00297
Aggregate -0.02033 -0.00373 -0.00177 -0.00143 -0.00322

Table 4. SHAP values for the encoding method design choice.

Model
Bucket size

1 10 20 30 39 1 10 20 30 39
BPIC2011 BPIC2012

Decision Tree 0.004257 0.003379 -0.0004314 -0.003761 -0.008527 0.03858 0.03858 0.02379 -0.08415 -0.09621
Random Forest -0.00005222 -0.0000507 -0.00004967 -0.00148 -0.0009228 -0.005275 -0.006052 -0.000339 0.01191 0.008619
LightGBM 0.000428 0.0007286 0.0006177 -0.002685 -0.007428 -0.02017 -0.008089 -0.007931 0.02883 0.03131
Xgboost 0.0007186 0.000747 0.001203 -0.001244 -0.004534 -0.009792 -0.007307 -0.003472 0.01785 0.01785

BPIC2015 BPIC2017
Decision Tree 0.0124 0.01233 0.003992 -0.02707 -0.03202 0.008328 0.000498 -0.003385 -0.003385 -0.004397
Random Forest -0.005799 -0.005793 -0.005522 0.008644 0.007628 0.004186 0.00001259 -0.001621 -0.001004 -0.0004125
LightGBM -0.002255 0.002389 0.0002062 -0.006223 -0.006966 -0.001326 -0.0006834 0.0006826 0.0004067 0.0008105
Xgboost -0.002724 -0.001934 0.001076 0.0009886 0.0102 -0.003683 -0.001349 0.00286 0.00286 0.002662

Table 5. Interaction score between design choices bucketing and model.

Regarding encoding methods (see Table 4), it appears that the index-based
encoding has in most cases a positive, albeit relatively small, impact on the
model performance, whereas the aggregation encoding method has a (small)
negative impact. Although aggregation encoding leverages information from the
events, it still incurs in information loss by disregarding the sequential order of
events. Furthermore, event attributes may lose their characteristics as they are
represented in the form of descriptive statistics rather than in their original state
like in index-based encoding. Hence, we conclude that, according to our analysis,
index-based should be preferred.

5.3 Analyzing the feature interaction contribution with EBM

Detecting pairwise interactions is one of the key functions of EBM, implemented
by a score that captures the combined effect of two features. Briefly, given a pair
of features xi and xj , the EBM creates a new interaction feature xi,j = (xi, xj).
Then, the interaction score of these two features is the contribution towards the
output of the model of xi,j .

As an illustration, we discuss here the interaction scores that we obtained
between bucketing (the most impactful design choice based on the analysis of
Section 5.2) and model, and between bucketing and encoding. Table 5 reports
the mean interaction score across all datasets between the bucketing and model
design choices. We can observe that when the bucketing size is below 20, the DT
model shows a higher interaction score than other models. When the bucketing
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Encoding method
Bucket size

1 10 20 30 39 1 10 20 30 39
BPIC2011 BPIC2012

Index-based 0.003773 0.0003773 0.0008611 -0.001043 -0.003819 0.001459 0.001459 -0.0006398 -0.005839 -0.0104
Aggregate -0.001813 0.001903 -0.001327 -0.001677 -0.001939 -0.001304 -0.001304 -0.001105 0.001635 0.01911

BPIC2015 BPIC2017
Index-based -0.005708 0.001278 -0.002065 -0.002983 0.002614 0.001155 0.001155 0.001387 -0.003359 -0.01516
Aggregate 0.003296 0.001943 0.00259 0.002686 -0.02655 -0.002047 0.0005249 -0.000774 -0.0002954 -0.00003619

Table 6. Interaction score between design choices bucketing and encoding.

size exceeds 20, the DT interaction score becomes negative. This shows a typical
moderation effect that can be highlighted by the EBM analysis: when choosing
to use a DT, a lower bucketing size is likely to improve the model performance.

Table 6 shows the mean interaction score across all datasets between bucketing
and encoding. Except for the BPIC2015 case, the table confirms the findings
of the SHAP analysis: index-based encoding and low bucketing size are “good”
design choices. Index-based encoding, indeed, creates a more positive interaction
effect on the model performance than aggregate encoding when the size of buck-
ets is below 20. As mentioned, the only exception to this trend is BPIC2015.
This could be due to the fact that the BPIC2015 datasets refer to different mu-
nicipalities — possibly with different characteristics — so the average scores for
these logs may not be reliable.

6 Conclusions

We have presented a framework to understand the impact of design choices on
the performance of a PPM model. The framework has been instantiated in the
case of outcome-oriented PPM, using an existing GA-based model configuration
generator and SHAP/EBM to explain the impact of the model design features
on the model performance. We have applied the framework to several publicly
available event logs, obtaining a set of general recommendations for developing
high-performing outcome-oriented PPM, such as preferring a lower bucketing
size, ensemble classifiers, and using index-based trace encoding.

The work presented here can be extended in many ways. New instantiations
can be generated and possibly compared. These may refer to other PPM use
cases and/or different search space exploration algorithms and explainability ap-
proaches. The results presented in this paper suggest that the best design choices
may depend on the context, i.e., the type of process generating a log. Event log
complexity meta-features can be used to increase the degree of explainability,
suggesting design choices for unseen contexts. We are also working on generat-
ing synthetic event logs with predefined characteristics to be able to assess more
rigorously the insights obtained from the instantiation of the framework.
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